進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2108201712022100
論文名稱(中文) 抗化性卵巢癌細胞藉由提升黏著斑之動態變化而獲得高移行能力
論文名稱(英文) Chemoresistant ovarian cancer possesses higher migration abilities by increasing dynamics of focal adhesions
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 105
學期 2
出版年 106
研究生(中文) 黃鉌凱
研究生(英文) Ho-Kai Huang
學號 P86044190
學位類別 碩士
語文別 英文
論文頁數 63頁
口試委員 指導教授-邱文泰
口試委員-張偉嶠
口試委員-湯銘哲
口試委員-葉明龍
口試委員-王仰高
中文關鍵字 抗化性  細胞移行  黏著斑 
英文關鍵字 Chemoresistance  cell migration  focal adhesions  SOCE 
學科別分類
中文摘要 卵巢癌在已開發國家是很常見的死因而且抗化性在此種類的癌症中有很高的盛行率。在本研究中,我們探討了抗藥性與一般性的卵巢癌細胞的不同之處。在本實驗中所使用的細胞為IGROV1一般性及抗藥性卵巢癌細胞,藉由全內反射螢光顯微鏡我們發現紡錘型態的抗化性癌細胞因為具備較高的黏著斑動態變化而能夠有較高的移行能力,且其黏著斑中不管是FAK, paxillin, vinculin, 或者talin的型態皆是形狀小、強度小且密度高因而使其能爬行的效率較高。另一方面,藉由細胞遷移實驗,我們發現SOCE抑制劑可以有效降低抗化性癌細胞的高移行能力。探討其細節,我們更發現紡錘型態的抗化性癌細胞ORAIs表現較高而STIMs表現較低。然而,紡錘型態的抗化性癌細胞表現較高的磷酸化Paxillin和SOCE,這解釋了此種細胞的高爬行能力。也就是說,在我們的細胞模型中,STIM感測器和ORAI通道扮演著一樣重要的角色而且較高的SOCE表現會導致較強的爬行能力。最後,我們使用了SOCE抑制劑來使抗化性卵巢癌細胞對化療藥物更敏感。這暗示了我們SOCE這條機制對於癌細胞的抗化性是有著某種程度的影響,且SOCE抑制劑在癌症治療中是有潛力發展成輔佐治療的工具。
英文摘要 Ovarian carcinoma is the leading cause of death in the developed world, and chemoresistance has been highly prevalent in this type of cancer. In our studies, we determine the difference between chemoresistant and normal ovarian cancer cells. IGROV1-WT and chemoresistant cells are used in our experiments. Using total internal reflection fluorescence microscopy (TIRFM), we found that spindle-like chemoresistant cells have higher migration properties because of their more rapid regulation of focal adhesion dynamics and because focal adhesions have small, low intensity, high density static state properties regardless of whether they occur via FAK, paxillin, vinculin, or talin, which can cause them to migrate more effectively. On the other hand, using wound healing and transwell assays, we found that SOCE (store-operated calcium entry) inhibitors will decrease high migration in chemoresistant cells. In detail, we found that spindle-like chemoresistant cells express higher ORAIs but lower STIMs. However, spindle-like chemoresistant cells presented higher p-Paxillin and have high SOCE which can explain the higher migration abilities. That is, in our cell models, both STIMs and ORAIs play important roles and higher SOCE will result in the higher migration abilities. Finally, we use SOCE inhibitors to make chemoresistant cells more sensitive to chemotherapeutic drugs. I can thus be inferred that the SOCE mechanism has an impact on chemoresistance and that SOCE inhibitors have the potential to act in combination in cancer treatment.
論文目次 Abstract...............................................1
中文摘要................................................3
Acknowledgement.........................................4
Contents................................................5
Figure & table contents.................................7
Chapter 1. Introduction............................................9
1.1 Chemotherapy and chemoresistance.................9
1.2 Cell migration..................................10
1.3 Focal adhesions.................................11
1.4 Calcium.........................................12
1.4.1 Calcium signaling..........................13
1.4.2 Store-operated calcium entry (SOCE)........14
1.5 Specific aim of this study......................15
Chapter 2. Materials and Methods.......................16
2.1 Cell culture....................................16
2.2 Migration assay.................................16
2.3 Adhesion assay..................................17
2.4 Immunofluorescence staining and TIRFM image.....17
2.5 Western blotting................................18
2.6 Single cell [Ca2+]i image.......................18
2.7 Cell counting...................................19
2.8 SOCE inhibitors.................................19
2.9 Focal adhesion dynamics and analysis server.....20
2.10 Statistical analysis...........................20
Chapter 3. Results.....................................21
Chapter 4. Discussion..................................26
References.............................................29Figures................................................36
Tables.................................................62
參考文獻 American Cancer Society. (2015) Cancer Facts & Figures 2015. Atlanta: American Cancer Society.
Becchetti, A. & Arcangeli, A. (2010) Integrins and ion channels in cell migration: implications for neuronal development, wound healing and metastatic spread. Advances in Experimental Medicine and Biology, 674: 107-123.
Berginski, M. E., Vitriol, E. A., Hahn, K. M. & Gomez, S. M. (2011) High-resolution quantification of focal adhesion spatiotemporal dynamics in living cells. PLOS ONE, 6(7): e22025.
Berridge, M. J., Bootman, M. D. & Lipp, P. (1998) Calcium-a life and death signal. Nature, 395(6703): 645-648.
Capiod, T., Shuba, Y., Skryma, R. & Prevarskaya, N. (2007) Calcium signalling and cancer cell growth. Subcellular Biochemistry, 45: 405-427.
Chen, Y. F., Hsu, K. F. & Shen, M. R. (2016) The store-operated Ca2+ entry-mediated signaling is important for cancer spread. Biochimica et Biophysica Acta-Molecular Cell Research, 1863(6): 1427-1435.
Chiu, W. T., Tang, M. J., Jao, H. C. & Shen, M. R. (2008) Soft substrate up-regulates the interaction of STIM1 with store-operated Ca2+ channels that lead to normal epithelial cell apoptosis. Molecular Biology of the Cell, 19(5): 2220-2230.
Clapham, D. E. (2007) Calcium signaling. Cell, 131(6): 1047-1058.
Cui, C., Merritt, R., Fu, L. & Pan, Z. (2016) Targeting calcium signaling in cancer therapy. Acta Pharmaceutica Sinica B, 7(1): 3-17.
Dargelos, E., Poussard, S., Brule, C., Daury, L. & Cottin, P. (2008) Calcium-dependent proteolytic system and muscle dysfunctions: a possible role of calpains in sarcopenia. Biochimie, 90(2): 359-368.
Di, J., Huang, H., Qu, D., Tang, J., Cao, W., Lu, Z., Cheng, Q., Yang, J., Bai, J., Zhang, Y. & Zheng, J. (2015) Rap2B promotes proliferation, migration, and invasion of human breast cancer through calcium-related ERK1/2 signaling pathway. Scientific Reports, 5: 12363.
Dingsdale, H., Okeke, E., Awais, M., Haynes, L., Criddle, D. N., Sutton, R. & Tepikin, A. V. (2013) Saltatory formation, sliding and dissolution of ER–PM junctions in migrating cancer cells. Biochemical Journal, 451(1): 25-32.
Diez-Bello, R., Jardin, I., Salido, G. M. & Rosado, J. A. (2017) Orai1 and Orai2 mediate store-operated calcium entry that regulates HL60 cell migration and FAK phosphorylation. Biochimica et Biophysica Acta-Molecular Cell Research, 1864(6): 1064-1070.
El Boustany, C., Bidaux, G., Enfissi, A., Delcourt, P., Prevarskaya, N. & Capiod, T. (2008) Capacitative calcium entry and transient receptor potential canonical 6 expression control human hepatoma cell proliferation. Hepatology, 47(6): 2068-2077.
Félix, R., Crottès, D., Delalande, A., Fauconnier, J., Lebranchu, Y., Le Guennec, J. Y. & Velge-Roussel, F. (2013) The Orai-1 and STIM-1 complex controls human dendritic cell maturation. PLOS ONE, 8(5): e61595.
Fife, C. M., McCarroll, J. A. & Kavallaris, M. (2014). Movers and shakers: cell cytoskeleton in cancer metastasis. British Journal of Pharmacology, 171(24): 5507-5523.
Frame, M. C., Fincham, V. J., Carragher, N. O. & Wyke, J. A. (2002) v-Src's hold over actin and cell adhesions. Nature Reviews Molecular Cell Biology, 3(4): 233-245.
He, L. P., Hewavitharana, T., Soboloff, J., Spassova, M. A. & Gill, D. L. (2005) A functional link between store-operated and TRPC channels revealed by the 3, 5-bis (trifluoromethyl) pyrazole derivative, BTP2. Journal of Biological Chemistry, 280(12): 10997-11006.
Kanchanawong, P., Shtengel, G., Pasapera, A. M., Ramko, E. B., Davidson, M. W., Hess, H. F. & Waterman, C. M. (2010) Nanoscale architecture of integrin-based cell adhesions. Nature, 468(7323), 580-584.
Kaverina, I. & Straube, A. (2011) Regulation of cell migration by dynamic microtubules. Seminars in Cell & Developmental Biology, 22(9): 968-974.
Munaron, L., Genova, T., Avanzato, D., Antoniotti, S. & Fiorio Pla, A. (2013) Targeting calcium channels to block tumor vascularization. Recent Patents on Anti-Cancer Drug Discovery, 8(1): 27-37.
Okeke, E., Parker, T., Dingsdale, H., Concannon, M., Awais, M., Voronina, S., Molgό, J., Begg, M., Metcalf, D., Knight, A., Sutton, R., Haynes, L. & Tepikin, A. (2016) Epithelial–mesenchymal transition, IP3 receptors and ER–PM junctions: translocation of Ca2+ signalling complexes and regulation of migration. Biochemical Journal, 473(6): 757-767.
Pani, B., Bollimuntha, S. & Singh, B. B. (2012) The TR (i)P to Ca2+ signaling just got STIMy: an update on STIM1 activated TRPC channels. Frontiers in Bioscience, 17: 805-823.
Rottner, K. & Stradal, T. E. (2011) Actin dynamics and turnover in cell motility. Current Opinion in Cell Biology, 23(5): 569-578.
Satheesh, N. J. & Büsselberg, D. (2015) The role of intracellular calcium for the development and treatment of neuroblastoma. Cancers, 7(2): 823-848.
Schindl, R., Bergsmann, J., Frischauf, I., Derler, I., Fahrner, M., Muik, M., Fritsch, R., Groschner, K. & Romanin, C. (2008) 2-aminoethoxydiphenyl borate alters selectivity of Orai3 channels by increasing their pore size. Journal of Biological Chemistry, 283(29): 20261-20267.
Stordal, B. & Davey, M. (2007) Understanding cisplatin resistance using cellular models. IUBMB Life, 59(11): 696-699.
Sung, H. H., Kam, S. C., Lee, J. H., Chae, M. R., Hong, C., Ko, M., Han, D. H., So, I. & Lee, S. W. (2012) Molecular and functional characterization of ORAI and STIM in human corporeal smooth muscle cells and effects of the transfer of their dominant-negative mutant genes into diabetic rats. The Journal of Urology, 187(5): 1903-1910.
Weaver, B. A. (2014) How Taxol/paclitaxel kills cancer cells. Molecular Biology of the Cell, 25(18): 2677-2681.
Wehrle-Haller, B. (2012) Assembly and disassembly of cell matrix adhesions. Current Opinion in Cell Biology, 24(5): 569-581.
Wehrle-Haller, B. (2012) Structure and function of focal adhesions. Current Opinion in Cell Biology, 24(1): 116-124.
Wu, C., Asokan, S. B., Berginski, M. E., Haynes, E. M., Sharpless, N. E., Griffith, J. D., Gomez, S. M. & Bear, J. E. (2012) Arp2/3 is critical for lamellipodia and response to extracellular matrix cues but is dispensable for chemotaxis. Cell, 148(5): 973-987.
Wu, C. C., Su, H. W., Lee, C. C., Tang, M. J. & Su, F. C. (2005) Quantitative measurement of changes in adhesion force involving focal adhesion kinase during cell attachment, spread, and migration. Biochemical and Biophysical Research Communications, 329(1): 256-265.
Xie, J., Pan, H., Yao, J., Zhou, Y. & Han, W. (2016) SOCE and cancer: recent progress and new perspectives. International Journal of Cancer, 138(9): 2067-2077.
Yamashita, M. & Prakriya, M. (2014) Divergence of Ca2+ selectivity and equilibrium Ca2+ blockade in a Ca2+ release-activated Ca2+ channel. The Journal of General Physiology, 143(3): 325-343.
Yamashita, M., Somasundaram, A. & Prakriya, M. (2011) Competitive modulation of Ca2+ release-activated Ca2+ channel gating by STIM1 and 2-aminoethyldiphenyl borate. Journal of Biological Chemistry, 286(11): 9429-9442.
Yang, N., Tang, Y., Wang, F., Zhang, H., Xu, D., Shen, Y., Sun, S. & Yang, G. (2013) Blockade of store-operated Ca2+ entry inhibits hepatocarcinoma cell migration and invasion by regulating focal adhesion turnover. Cancer Letters, 330(2): 163-169.
Yang, S., Zhang, J. J. & Huang, X. Y. (2009) Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. Cancer Cell, 15(2): 124-134.
Yeromin, A. V., Zhang, S. L., Jiang, W., Yu, Y., Safrina, O. & Cahalan, M. D. (2006) Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature, 443(7108): 226-229.
Zeng, B., Yuan, C., Yang, X., L Atkin, S. & Xu, S. Z. (2013) TRPC channels and their splice variants are essential for promoting human ovarian cancer cell proliferation and tumorigenesis. Current Cancer Drug Targets, 13(1): 103-116.
Zhang, B., Yan, J., Schmidt, S., Salker, M. S., Alexander, D., Föller, M. & Lang, F. (2015) Lithium-sensitive store-operated Ca2+ entry in the regulation of FGF23 release. Neurosignals, 23(1): 34-48.
Zhang, S., Miao, Y., Zheng, X., Gong, Y., Zhang, J., Zou, F. & Cai, C. (2017) STIM1 and STIM2 differently regulate endogenous Ca2+ entry and promote TGF-β-induced EMT in breast cancer cells. Biochemical and Biophysical Research Communications, 488(1): 74-80.
Zhao, J. (2016) Cancer stem cells and chemoresistance: The smartest survives the raid. Pharmacology & Therapeutics, 160: 145-158.
Zhu, C., Bao, G. & Wang, N. (2000) Cell mechanics: mechanical response, cell adhesion, and molecular deformation. Annual Review of Biomedical Engineering, 2(1): 189-226.
Zhu, H., Zhang, H., Jin, F., Fang, M., Huang, M., Yang, C. S., Chen, T., Fu, L. & Pan, Z. (2014) Elevated Orai1 expression mediates tumor-promoting intracellular Ca2+ oscillations in human esophageal squamous cell carcinoma. Oncotarget, 5(11): 3455.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-07-18起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw