進階搜尋


 
系統識別號 U0026-2108201615242800
論文名稱(中文) 以高頻超音波逆散射訊號及統計參數評估牙周病
論文名稱(英文) Periodontal Disease Assessed by High Frequency Ultrasonic Backscattered Signals and Statistical Parameter
校院名稱 成功大學
系所名稱(中) 資訊工程學系
系所名稱(英) Institute of Computer Science and Information Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 任健榮
研究生(英文) Chien-Jung Jen
學號 P76031470
學位類別 碩士
語文別 英文
論文頁數 58頁
口試委員 指導教授-王士豪
口試委員-孫永年
口試委員-郭榮富
口試委員-黃執中
口試委員-林奕勳
中文關鍵字 高頻超音波  牙周病  超音波定量參數 
英文關鍵字 high-frequency ultrasound  periodontal disease  ultrasonic quantitative parameters 
學科別分類
中文摘要 牙周疾病是現在非常常見的疾病影響了全球90%的人口,並且有許多的嚴重疾病都與牙周病有關聯。現今最常用於偵測牙周病的臨床方法為口部X光影像與牙周探針,但是X光的游離輻射與牙周探針的侵入偵測而造成患者疼痛與傷害都是很擾人的議題。因此有必要發展一個不具游離輻射且不會造成患者疼痛的評估牙周病方法,所以這篇本研究主要是透過70MHz 的高頻超音波系統去偵測牙齦溝深度與牙齦組織的組織特性。透過將牙齒模型嵌入假體之中來驗證超音波系統,並且藉由綁線誘導大鼠牙齦發炎的方法得到動物的牙齦發炎模組。透過將編織尼龍縫線綁置於牙齒與牙齦的交界處來達到誘發牙齦發炎的目的,透過超音波探頭並使用C-Scan 的方式掃描假體和大鼠的牙齦組織。透過在每張連續的B-mode影像上做牙齦溝的判斷,牙齦溝的深度資訊就可以被計算出來,而牙周病的嚴重程度也可以透過計算超音波的定量參數Nakagami參數與逆散射訊號來做評估。自動偵測牙齦溝深度演算法的結果藉由與牙周探針來做比對後可以看出透過B-mode影像來做牙齦溝深度的計算是一個不錯的測量方式。在誘發大鼠牙齦發炎後的結果上可以看到牙齦的厚度、Nakagami參數、逆散射訊號都與控制組的結果有明顯的變化,並且可以從B-mode影像上看出牙齦腫脹前後會有明顯的差異。這篇研究將展示70MHz的高頻超音波系統有能力透過計算牙齦溝的深度與測量超音波定量參數來分析牙周疾病。
英文摘要 Periodontal diseases are very common and can affect up to 90% of the worldwide population. Some acute diseases have also been associated with periodontal diseases. Dental radiography and the periodontal probe are the most popular ways nowadays to diagnose periodontal disease, but the irradiation of radiography and the pain with examination of periodontal probe are annoying issues. It is necessary to develop a new diagnosis method with properties of non-ionization and painless examination to assess the periodontal disease. This study proposed a 70 MHz high-frequency ultrasound imaging system for measuring the depth of gingival sulcus and the tissue properties of gingiva. A plastic dental model was embedded in a tissue-mimicking phantom to be used to verify the ultrasound imaging system. Subsequently, the rat model for periodontal disease was achieved by ligature-induced. The phantom and gingival tissue were scanned by the ultrasonic transducer to acquire ultrasonic signals. By detecting every continuous B-mode image, the depth of gingival sulcus can be calculated. The degrees of periodontal disease were related to ultrasonic parameters. Integrated backscatter and Nakagami parameter were calculated from ultrasound image inside region of interest (ROI), respectively. The results of depth which were calculating by algorithm of automatically detecting gingival sulcus and periodontal probe show that calculating the depth of gingival sulcus by B-mode image is an feasible way to measurement. After ligature-induced gingivitis in rats, the results show that the thickness of gingival, Nakagami parameter and integrated backscatter were different from the control group. The difference between normal thickness of gingival and swelling thickness of gingival can also be seen on B-mode image. This study demonstrated that the 70 MHz high-frequency ultrasound imaging system which could be used to analyze the periodontal disease by measuring the depth of gingival sulcus and ultrasonic quantitative parameters.
論文目次 摘要 I
Abstract II
Content V
List of Tables VII
List of Figures VIII
Chapter 1 Introduction 1
1.1 Ultrasound 1
1.2 Quantitative Ultrasound Parameters 2
1.4 Research background 4
1.4.1 Basic Periodontal Anatomy 4
1.4.2 Periodontal Disease & Dental Cavity Pathophysiology 5
1.5 Related Research 7
1.5.1 Periodontal Disease in Clinical Diagnosis 7
1.5.2 Application of Ultrasound in Periodontal 7
1.6 Motivation and Objectives 8
Chapter 2 Theoretical Background 9
2.1 Fundamentals of Ultrasound Wave Propagation 9
2.2 Reflection and Refraction 11
2.2.1 Ultrasonic Attenuation and Scattering 13
2.3 Statistical Models for Ultrasonic Backscattered Signals 18
2.4 Ultrasonic Transducers 21
Chapter 3 Materials and Methods 23
3.1 Experiments on A Plastic Dental Model 23
3.2 Simulate Periodontal Pocket by Phantoms 27
3.3 In vivo Rat Ligature-induced Periodontal Disease 31
3.4 Ultrasound Imaging System 37
Chapter 4 Results and Discussion 40
4.1 Plastic Dent Model 3D Reconstruction 40
4.2 Periodontal Pocket Depth Measurement 42
4.3 In vivo Animal Models of Gingivitis 46
Chapter 5 Conclusions and Future works 52
5.1 Conclusions 52
5.2 Suggestions for Future works 52
References 53
參考文獻 [1] K. K. Shung and G. A. Thieme, Ultrasonic scattering in biological tissues: CRC Press, 1992.
[2] K. Hynynen, "Focused ultrasound surgery guided by MRI," Science and Medicine, vol. 3, pp. 62-71, 1996.
[3] F. C. Pekam, J. Marotti, S. Wolfart, J. Tinschert, K. Radermacher, and S. Heger, "High-Frequency Ultrasound as an Option for Scanning of Prepared Teeth: An in Vitro Study," Ultrasound in medicine & biology, vol. 41, pp. 309-316, 2015.
[4] S. Heger, T. Vollborn, J. Tinschert, S. Wolfart, and K. Radermacher, "Accuracy assessment of high frequency 3D ultrasound for digital impression-taking of prepared teeth," in SPIE Medical Imaging, 2013, pp. 86751N-86751N-9.
[5] G. K. Sandhu, S. Angyalfi, P. B. Dunscombe, and R. F. Khan, "Is tissue harmonic ultrasound imaging (THI) of the prostatic urethra and rectum superior to brightness (B) mode imaging? An observer study," Physica medica, vol. 30, pp. 662-668, 2014.
[6] F. Forsberg, W. Shi, and B. Goldberg, "Subharmonic imaging of contrast agents," Ultrasonics, vol. 38, pp. 93-98, 2000.
[7] W. McDicken, G. Sutherland, C. Moran, and L. Gordon, "Colour Doppler velocity imaging of the myocardium," Ultrasound in medicine & biology, vol. 18, pp. 651-654, 1992.
[8] V. Richand, S. Lafitte, P. Reant, K. Serri, M. Lafitte, S. Brette, et al., "An ultrasound speckle tracking (two-dimensional strain) analysis of myocardial deformation in professional soccer players compared with healthy subjects and hypertrophic cardiomyopathy," The American journal of cardiology, vol. 100, pp. 128-132, 2007.
[9] M. M. Nguyen, S. Zhou, J.-l. Robert, V. Shamdasani, and H. Xie, "Development of oil-in-gelatin phantoms for viscoelasticity measurement in ultrasound shear wave elastography," Ultrasound in medicine & biology, vol. 40, pp. 168-176, 2014.
[10] M. E. Buemi, A. C. Frery, and H. S. Ramos, "Speckle reduction with adaptive stack filters," Pattern Recognition Letters, vol. 36, pp. 281-287, 2014.
[11] J. Roelandt, C. di Mario, N. G. Pandian, L. Wenguang, D. Keane, C. J. Slager, et al., "Three-dimensional reconstruction of intracoronary ultrasound images. Rationale, approaches, problems, and directions," Circulation, vol. 90, pp. 1044-1055, 1994.
[12] T. Y. Wu, N. Guo, C. Y. Teh, and J. X. W. Hay, "Theory and fundamentals of ultrasound," in Advances in ultrasound technology for environmental remediation, ed: Springer, 2013, pp. 5-12.
[13] F. Ossant, M. Lebertre, L. Pourcelot, and F. ŕ. Patat, "Ultrasonic characterization of maturation of fetal lung microstructure: an animal study," Ultrasound in medicine & biology, vol. 27, pp. 157-169, 2001.
[14] M. Lebertre, F. Ossant, L. c. Vaillant, S. Diridollou, and F. Patat, "Spatial variation of acoustic parameters in human skin: an in vitro study between 22 and 45 MHz," Ultrasound in medicine & biology, vol. 28, pp. 599-615, 2002.
[15] C. Njeh, I. Saeed, M. Grigorian, D. Kendler, B. Fan, J. Shepherd, et al., "Assessment of bone status using speed of sound at multiple anatomical sites," Ultrasound in medicine & biology, vol. 27, pp. 1337-1345, 2001.
[16] P. D. Bevan and M. D. Sherar, "B-scan ultrasound imaging of thermal coagulation in bovine liver: log envelope slope attenuation mapping," Ultrasound in medicine & biology, vol. 27, pp. 379-387, 2001.
[17] K. K. Shung, M. Smith, and B. M. Tsui, Principles of medical imaging: Academic Press, 2012.
[18] C. B. Burckhardt, "Speckle in ultrasound B-mode scans," Sonics and ultrasonics, IEEE Transactions on, vol. 25, pp. 1-6, 1978.
[19] R. F. Wagner, M. F. Insana, and D. G. Brown, "Statistical properties of radio-frequency and envelope-detected signals with applications to medical ultrasound," JOSA A, vol. 4, pp. 910-922, 1987.
[20] L. Weng, J. M. Reid, P. M. Shankar, and K. Soetanto, "Ultrasound speckle analysis based on the K distribution," The Journal of the Acoustical Society of America, vol. 89, pp. 2992-2995, 1991.
[21] V. Dutt and J. F. Greenleaf, "Ultrasound echo envelope analysis using a homodyned K distribution signal model," Ultrasonic Imaging, vol. 16, pp. 265-287, 1994.
[22] P. M. Shankar, "A model for ultrasonic scattering from tissues based on the K distribution," Physics in medicine and biology, vol. 40, p. 1633, 1995.
[23] B. I. Raju and M. A. Srinivasan, "Statistics of envelope of high-frequency ultrasonic backscatter from human skin in vivo," Ultrasonics, ferroelectrics, and frequency control, IEEE Transactions on, vol. 49, pp. 871-882, 2002.
[24] P. M. Shankar, "A general statistical model for ultrasonic backscattering from tissues," Ultrasonics, ferroelectrics, and frequency control, IEEE Transactions on, vol. 47, pp. 727-736, 2000.
[25] P. M. Shankar, "A compound scattering pdf for the ultrasonic echo envelope and its relationship to K and Nakagami distributions," Ultrasonics, ferroelectrics, and frequency control, IEEE Transactions on, vol. 50, pp. 339-343, 2003.
[26] P. B. Lockhart, A. F. Bolger, P. N. Papapanou, O. Osinbowale, M. Trevisan, M. E. Levison, et al., "Periodontal disease and atherosclerotic vascular disease: does the evidence support an independent association? A scientific statement from the American Heart Association," Circulation, vol. 125, pp. 2520-2544, 2012.
[27] F. A. Scannapieco, R. B. Bush, and S. Paju, "Periodontal disease as a risk factor for adverse pregnancy outcomes. A systematic review," Annals of Periodontology, vol. 8, pp. 70-78, 2003.
[28] J. Beck, R. Garcia, G. Heiss, P. S. Vokonas, and S. Offenbacher, "Periodontal disease and cardiovascular disease," Journal of periodontology, vol. 67, pp. 1123-1137, 1996.
[29] S.-J. Janket, A. E. Baird, S.-K. Chuang, and J. A. Jones, "Meta-analysis of periodontal disease and risk of coronary heart disease and stroke," Oral surgery, oral medicine, oral pathology, oral radiology, and endodontology, vol. 95, pp. 559-569, 2003.
[30] F. A. Scannapieco, R. B. Bush, and S. Paju, "Associations between periodontal disease and risk for nosocomial bacterial pneumonia and chronic obstructive pulmonary disease. A systematic review," Annals of periodontology, vol. 8, pp. 54-69, 2003.
[31] S. G. Grossi and R. J. Genco, "Periodontal Disease and Diabetes Mellitus: A Two-Way Relationship*," Annals of periodontology, vol. 3, pp. 51-61, 1998.
[32] B. L. Pihlstrom, B. S. Michalowicz, and N. W. Johnson, "Periodontal diseases," The lancet, vol. 366, pp. 1809-1820, 2005.
[33] G. C. Armitage, "Periodontal diseases: diagnosis," Annals of periodontology, vol. 1, pp. 37-215, 1996.
[34] A. Gaffar, J. Afflitto, N. Nabi, S. Herles, I. Kruger, and S. Olsen, "Recent advances in plaque, gingivitis, tartar and caries prevention technology," International dental journal, vol. 44, pp. 63-70, 1994.
[35] W. J. Loesche and N. S. Grossman, "Periodontal disease as a specific, albeit chronic, infection: diagnosis and treatment," Clinical microbiology reviews, vol. 14, pp. 727-752, 2001.
[36] T. Halazonetis, A. Haffajee, and S. Socransky, "Relationship of clinical parameters to attachment loss in subsets of subjects with destructive periodontal diseases," Journal of clinical periodontology, vol. 16, pp. 563-568, 1989.
[37] W. J. Baumgartner, R. P. Weis, and J. L. Reyher, "The diagnostic value of redness in gingivitis," Journal of periodontology, vol. 37, pp. 294-297, 1966.
[38] R. C. Williams, "Periodontal disease," New England Journal of Medicine, vol. 322, pp. 373-382, 1990.
[39] S. G. Grossi, J. J. Zambon, A. W. Ho, G. Koch, R. G. Dunford, E. E. Machtei, et al., "Assessment of risk for periodontal disease. I. Risk indicators for attachment loss," Journal of periodontology, vol. 65, pp. 260-267, 1994.
[40] A. Contreras, H. Nowzari, and J. Slots, "Herpesviruses in periodontal pocket and gingival tissue specimens," Oral microbiology and immunology, vol. 15, pp. 15-18, 2000.
[41] D. R. Loker and K. Hagenbuch, "Ultrasonic periodontal diagnostic instrumentation system with clinical results," Measurement, vol. 23, pp. 125-129, 1998.
[42] J. E. Lynch, M. K. Hinders, and G. B. McCombs, "Clinical comparison of an ultrasonographic periodontal probe to manual and controlled-force probing," Measurement, vol. 39, pp. 429-439, 2006.
[43] B. Savitha and K. Vandana, "Comparative assesment of gingival thickness using transgingival probing and ultrasonographic method," Indian Journal of Dental Research, vol. 16, p. 135, 2005.
[44] R. Issrani, S. Chavva, N. Prabhu, V. Keluskar, V. Jirge, V. Kumbujkar, et al., "Transgingival Probing and Ultrasonographic Methods for Determination of Gingival Thickness-A Comparative Study," Advances in human biology, vol. 3, pp. 43-51, 2013.
[45] F. I. Tsiolis, I. G. Needleman, and G. S. Griffiths, "Periodontal ultrasonography," Journal of clinical periodontology, vol. 30, pp. 849-854, 2003.
[46] H. M. Jameel and M. S. Mahmood, "Clinical importance of gingival biotype (Review of literature)," Journal of baghdad college of dentistry, vol. 27, pp. 93-101, 2015.
[47] K. K. Shung, Diagnostic ultrasound: Imaging and blood flow measurements: CRC press, 2015.
[48] K. K. Shung, "General engineering principles in diagnostic ultrasound," Engineering in medicine and biology magazine, IEEE, vol. 6, pp. 7-13, 1987.
[49] G. Habiboallah, Z. Mahdi, S. Nasroallah, Z. Massoud, B. N. Ehsan, Z. J. Mina, et al., "Enhancement of Periodontal Healing by Application of a Novel Ointment Compared with Hyaluronic Acid, Histological Observation in Animal Model," Modern research in inflammation, vol. 2014, 2014.
[50] S.-i. Miyajima, K. Naruse, Y. Kobayashi, N. Nakamura, T. Nishikawa, K. Adachi, et al., "Periodontitis-activated monocytes/macrophages cause aortic inflammation," Scientific reports, vol. 4, 2014.
[51] J. M. de Almeida, L. H. Theodoro, A. F. Bosco, M. J. H. Nagata, M. Oshiiwa, and V. G. Garcia, "Influence of photodynamic therapy on the development of ligature-induced periodontitis in rats," Journal of periodontology, vol. 78, pp. 566-575, 2007.
[52] N. E. Huang, Hilbert-Huang transform and its applications vol. 16: World Scientific, 2014.
[53] T. L. Szabo, Diagnostic ultrasound imaging: inside out: Academic Press, 2004.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-08-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw