進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2108201610342000
論文名稱(中文) 無線射頻標籤系統中基於曼徹斯特訊號碰撞特性之新式標籤搜尋協定設計
論文名稱(英文) A Novel Tag Searching Protocol based on Manchester Signal Collision in RFID Systems
校院名稱 成功大學
系所名稱(中) 電腦與通信工程研究所
系所名稱(英) Institute of Computer & Communication
學年度 104
學期 2
出版年 105
研究生(中文) 林長德
研究生(英文) Chang-De Lin
學號 Q36034405
學位類別 碩士
語文別 英文
論文頁數 62頁
口試委員 指導教授-李忠憲
口試委員-劉川綱
口試委員-鄭伯炤
口試委員-蘇暉凱
口試委員-郭文中
中文關鍵字 無線射頻系統  標籤辨識  標籤搜尋  曼徹斯特編碼 
英文關鍵字 RFID system  tag identification  tag searching  Manchester encoding 
學科別分類
中文摘要 無線射頻辨識系統的使用在各個領域已是相當普及,例如物流控管、物件追蹤…等,其中以標籤辨識最被深入研究,但是在實際應用上,標籤搜尋則是很重要且實用的一項議題,但是標籤搜尋卻不若標籤辨識一般被廣泛地研究,因此,本論文探討的主題在於如何在有限時間內有效率地找出目標標籤,現存的標籤搜尋協定並沒有定義標籤回覆的訊號型態,只以一位元短訊號當作其回覆給讀取器的形式,所以在判別是否為目標標籤的時候其效能並不突出,但是本論文以曼徹斯特編碼的形式定義了標籤回傳訊號的型態,藉此提出名為過濾時槽的創新技術,過濾時槽可以在標籤不回傳標籤資訊的情況下,藉由曼徹斯特編碼的幫助,可以幫助讀取器判別在涵蓋範圍之內回傳的標籤是不是目標標籤,亦可藉此消去候選集合當中的非目標標籤。標籤搜尋在之前的論文所提出的方法之中會出現映射碰撞的問題,若是滿足終止條件的最後一個回合,候選目標標籤集合當中的標籤同時映射至同一時槽的情形,此種情況會導致讀取器誤判兩顆標籤皆有存在於讀取器涵蓋範圍之中,有鑑於此。本論文亦有提出解決碰撞映射問題方法的時槽跳躍技術,將最一回合所傳的訊框大小乘上兩倍,再隨機打散候選集合當中的標籤映射,達到每個標籤都與時槽產生一對一的映射時,再透過時槽跳躍,跳過控制時槽進而檢驗過濾時槽是否有訊號回傳,最後在本論文後會展示模擬結果,證明所提出來的方法是比現存的標籤搜尋協定還要快速且有效率的。
英文摘要 Applications of radio frequency identification technology are popular in many aspects such as inventory management in retail industry, object tracking and identification, etc. In these applications, tag identification is in-depth study. In the practical applications, searching for some tags we want is applied and significant. Tag searching has not been found its advanced usage rather than the thorough research in tag identification. Consequently, this study focuses on the topic of finding out the target tags which we aimed effectively in the finite and limited time. It isn’t well defined that signal responses from tags to reader in existing tag searching protocols. Almost protocols use one-bit short response as a message from tag to reader. It will leads low efficiency in figuring out whether these tag are target tags or not. However, we define the signal from tag to reader based on Manchester encoding technique. By means of Manchester signal, we propose new novel technique called filtering slot. This technique with assistance of Manchester encoding could help reader differentiate whether these tags in its coverage area are target tags without tag-ID transmission. Filtering slot also helps reader eliminate non-target tags in the set of candidate target tags. The protocol of tag searching proposed in the previous paper brings about the problem called mapping collision. Satisfied with termination condition in the final round, more than two tags in the set of candidate target tags map to the same filtering slot simultaneously. This situation makes reader wrong decision that two tags are correctly in the interrogation zone. In view of this, our study proposed new solution called slot hopping. By multiplying two times of frame size, then it makes candidate tags random map to slots again. Hence, this method could achieve the goal that every candidate target tag satisfies one-to-one mapping with slots. At the end of this study, we use slot hopping technique to omit the examination of controlling slot and directly check whether any signals are received in filtering slot. Simulation results show that our protocol is more efficient and faster than previous tag searching protocol.
論文目次 摘要 I
Abstract II
誌謝 IV
Contents V
List of Tables VII
List of Figures VIII
Chapter 1 Introduction 1
1.1 Introduction 1
1.2 Motivation 2
1.3 Organization 5
Chapter 2 Background & Related Work 6
2.1 RFID Tag Identification Protocol 6
2.2 RFID Tag Searching Protocol 7
2.3 Time-Slots and Manchester Encoding Scheme 9
2.4 Manchester Encoding Scheme 10
Chapter 3 System Architecture 12
3.1 System Architecture 13
3.2 Problem Formulation 14
3.3 Proposed Algorithm 16
3.3.1 Design Principle 16
3.3.2 Protocol Explanation 17
3.3.3 Protocol Illustration 21
Chapter 4 Mathematical Analysis 31
4.1 Cardinality Estimation 31
4.2 Frame Size Setting 32
4.3 Termination Condition 34
Chapter 5 Mapping Collision Problem 38
5.1 Problem Statement 38
5.2 Solution 41
Chapter 6 Performance Evaluation 44
6.1 Simulation Scenario 44
6.2 TSMCP vs. STEP 44
6.3 Execution time 55
Chapter 7 Conclusion & Future Work 59
7.1 Discussion 59
7.2 Future Work and Conclusion 60
References 61

參考文獻 [1] C. C. Tan, B. Sheng, and Q. Li, “How to monitor for missing RFID tags,” in Proc. IEEE ICDCS, 2008, pp. 295–302.
[2] S. Chen, M. Zhang, and B. Xiao, “Efficient information collection protocols for sensor-augmented RFID networks,” in Proc. IEEE INFOCOM, 2011, pp. 3101–3109.
[3] C.-H. Lee and C.-W. Chung, “Efficient storage scheme and query processing for supply chain management using RFID,” in Proc. ACM SIGMOD, 2008, pp. 291–302.
[4] Y. Qiao, S. Chen, T. Li, and S. Chen, “Energy-efficient polling protocols in RFID systems,” in Proc. ACM MobiHoc, 2011, Article no. 25.
[5] L. M. Ni, Y. Liu, Y. C. Lau, and A. Patil, “LANDMARC: Indoor location sensing using active RFID,” Wireless Netw., vol. 10, no. 6, pp.701–710, 2004.
[6] D. Zhang, J. Zhou,M. Guo, J. Cao, and T. Li, “TASA: Tag-free activity sensing using RFID tag arrays,” IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 4, pp. 558–570, 2011.
[7] L. Lu, Y. Liu, and X. Li, “Refresh: Weak privacy model for RFID systems,” in Proc. IEEE INFOCOM, 2010, pp. 1–9.
[8] L. Yang, J. Han, Y. Qi, and Y. Liu, “Identification-free batch authentication for RFID tags,” in Proc. IEEE ICNP, 2010, pp. 154–163.
[9] R. Zhang, Y. Liu, Y. Zhang, and J. Sun, “Fast identification of the missing tags in a large RFID system,” in Proc. IEEE SECON, 2011, pp. 278–286.
[10] D. Molnar and D. Wagner, “Privacy and security in library RFID: issues, practices, and architectures,” in Proc. ACM CCS, 2004, pp.210–219.
[11] C. C. Tan, B. Sheng, and Q. Li, “Secure and serverless RFID authentication and search protocols,” IEEE Trans. Wireless Commun., vol. 7,no. 4, pp. 1400–1407, Apr. 2008.
[12] T. F. La Porta, G. Maselli, and C. Petrioli, “Anticollision protocols for single-reader RFID systems: Temporal analysis and optimization,” IEEE Trans. Mobile Comput., vol. 10, no. 2, pp. 267–279, Feb. 2011.
[13] S. Tang, J. Yuan, X.-Y. Li, G. Chen, Y. Liu, and J. Zhao, “RASPberry:A stable reader activation scheduling protocol in multi-reader RFID systems,” in Proc. IEEE ICNP, 2009, pp. 304–313.
[14] Y. Zheng and M. Li, “Fast tag searching protocol for large-scale RFID systems,” IEEE/ACM Trans. Netw., vol. 21, no. 3, pp. 924–934, Jun. 2013.
[15] W. Lou, Y. Qiao, and S. Chen, “An efficient tag searching protocol in large-scale RFID systems,” in Proc. IEEE Conf. Comput. Commun., 2013, pp. 899–907.
[16] S. Zhang, X. Liu, J. Wang, J. Cao, and G. Min, “Energy-efficient active tag searching in large scale RFID systems,” Inf. Sci., 2014.
[17] X. Liu, B. Xiao, S. Zhang, K. Bu, and A. Chan, “Step: A time-efficient tag searching protocol in large RFID systems,” IEEE Trans. Comput., vol. 64,no. 11, pp. 3265–3277, Jan. 2015.
[18] L. Xie, Y. Yin, A. V. Vasilakos, and S. Lu, “Managing RFID data : Challenges, opportunities and solutions,” IEEE Commun. Surveys Tuts., vol. 16, no. 3, pp. 1294–1311, Third Quarter 2014.
[19] J. Myung, W. Lee, J. Srivastava, and T. Shih, “Tag-splitting: Adaptive collision arbitration protocols for RFID tag identification,” IEEE Trans. Parallel Distrib. Syst., vol. 18, no. 6, pp. 763–775, Jun.2007.
[20] M. Shahzad and A. Liu, “Probabilistic optimal tree hopping for RFID identification,” IEEE/ACM Trans. Netw., vol. 23, no. 3, pp. 796–809, Jun. 2015.
[21] Y. Lai, L. Hsiao, H. Chen, C. Lai, and J. Lin, “A novel query tree protocol with bit tracking in RFID tag identification,” IEEE Trans. Mobile Comput., vol. 12, no. 10, pp. 2063–2075, Oct. 2013.
[22] J. Wang, H. Hassanieh, D. Katabi, and P. Indyk, “Efficient and reliable low-power backscatter networks,” ACM SIGCOMM Comput. Commun. Rev., vol. 42, no. 4, pp. 61–72, 2012.
[23] L. Kang, K. Wu, J. Zhang, H. Tan, and L. M. Ni, “DDC: A novel scheme to directly decode the collisions in UHF RFID systems,” IEEE Trans. Parallel Distrib. Syst., vol. 23, no. 2, pp. 263–270, Feb. 2012.
[24] J. Li and Y. Huo, “An efficient time-bound collision prevention scheme for RFID re-entering tags,” IEEE Trans. Mobile Comput.,vol. 12, no. 6, pp. 1054–1064, Jun. 2013.
[25] X. Liu, B. Xiao, S. Zhang, and K. Bu, “Unknown tag identification in large RFID systems: An efficient and complete solution,” IEEE Trans. Parallel Distrib. Syst., 2014, doi:10.1109/TPDS.2014.2326651.
[26] J. Yao, T. Xiong, and W. Lou, “Beyond the limit: A fast tag identification protocol for RFID systems,” Pervasive Mobile Comput., 2014, doi:10.1016/j.pmcj.2014.10.003.
[27] D. Klair, K. Chin, and R. Raad, “An investigation into the energy efficiency of pure and slotted aloha based RFID anti-collision protocols,” in Proc. Int. Symp. World Wireless, Mobile Multimedia Netw., 2007, pp. 1–4.
[28] V. Namboodiri and L. Gao, “Energy-aware tag anticollision protocols for RFID systems,” IEEE Trans. Mobile Comput., vol. 9, no. 1, pp. 44–59, Jan. 2009.
[29] K. Finkenzeller et al., RFID Handbook: Fundamentals and Applications in Contactless Smart Cards, Radio Frequency Identification and Near-Field Communication. Hoboken, NJ, USA: Wiley, 2010.
[30] P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for data base applications,” J. Comput. Syst. Sci., vol. 31, no. 2, pp. 182–209,1985.
[31] C. Qian, H. Ngan, and Y. Liu, “Cardinality estimation for large-scale RFID systems,” in Proc. 6th Annu. IEEE Int. Conf. Pervasive Comput.Commun., 2008, pp. 30–39.
[32] M. Chen, W. Luo, Z. Mo, and S. Chen, "An Efficient Tag Search Protocol in Large-Scale RFID Systems With Noisy Channel,” IEEE/ACM Trans. Netw., vol. 24, no. 2, pp. 703-706, Apr. 2016.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-08-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw