進階搜尋


下載電子全文  
系統識別號 U0026-2108201514453400
論文名稱(中文) 多階段易腐性存貨之採收販賣政策
論文名稱(英文) The Multi-Stage Harvesting and Selling Policy for the Perishable Inventory
校院名稱 成功大學
系所名稱(中) 工業與資訊管理學系
系所名稱(英) Department of Industrial and Information Management
學年度 103
學期 2
出版年 104
研究生(中文) 賴弘軒
研究生(英文) Hung-Hsuan Lai
學號 R36024126
學位類別 碩士
語文別 中文
論文頁數 49頁
口試委員 指導教授-王泰裕
口試委員-陳梁軒
口試委員-蔡青志
口試委員-林君維
中文關鍵字 易腐性存貨  多階段採收  多階段販賣 
英文關鍵字 perishable products  multi-stage harvesting policy  multi-stage selling policy 
學科別分類
中文摘要 摘要
在各大產業,存貨如何管理皆是ㄧ項重要的議題。存貨管理的主要目的為避免缺貨的的情況產生、降低因過多存貨累積造成的成本以及幫助管理者做出適當的進貨以及出貨政策。然而在現實情況中,部份的存貨具有隨著存放時間的增加以及環境造成的因素,使得存貨腐敗或是耗損的情形,進而產生成本,具有此類特性的存貨我們稱之為易腐性存貨。隨著存貨管理研究不斷的發展,已有許多研究將上述存貨的易腐性質納入存貨模式的考慮中以貼近現實發生情況,進而減少成本或增加利潤。
生鮮蔬果對於人們來說已是日常生活中不可或缺的重要食物來源,透過成熟的供應鏈,生鮮蔬果可以快速的運送到各大量販店、傳統市場、生鮮超市等。然而部份生鮮蔬果具有固定的產季,對於種植的農戶而言,在生鮮蔬果隨著產季到來逐漸成熟的情形下,如何安排採收以及販賣的政策,決定每次的採收以及販賣量才能夠最大化農戶自身的利潤對於農戶而言非常重要,但是ㄧ般的農戶較少具有專業的數學知識,對於採收與販賣的政策通常根據直覺或是經驗法則,較少利用模式建立的方式決定採收以及販賣的政策。
因此本研究根據現實農戶種植生鮮蔬果的情況建構一個具有多階段採收以及販賣的易腐性存貨模式。模式模擬現實情況中單一農戶販賣生鮮蔬果給盤商的情形,以最大化農戶自身利潤為目標,使用韋伯分配腐敗率,找出最適合每期採收與販賣量的採收販賣政策。進行分析後結果顯示對於我們的分期採收販賣模式較為敏感的參數為售價、最大採收量以及韋伯腐敗率形狀參數這三項,如果單一個體農戶想要提高利潤的話,應針對這三項參數入手較能有效提高利潤。
關鍵字:易腐性存貨、多階段採收、多階段販賣
英文摘要 SUMMARY

Fruit and vegetable are important sources of food to human beings. Due to the stable food supply chain, customers can enjoy the fresh fruits and vegetables they need in the market. However, fresh fruit and vegetable would deteriorate over time and this characteristic may decrease their value. In this study, we focus on the farmers who grow tangerine, one of typical fruits in Taiwan. Although the farmers grow tangerine, they do not determine the price. The price is usually determined by wholesalers, who open the daily price of tangerine. Therefore, the farmers have to decide how much tangerine to harvest and sell to wholesaler each day or keep the tangerine to harvest and sell to wholesaler in the future. This is a trade-off between price and deterioration. It is an especially important issue and it has a profound impact on farmers’ profit. According to our survey, the harvesting and selling policy of most farmers usually come from their own experience. They often harvest and sell tangerine regularly. In order to reduce the risk of low price, some of them may presale their tangerine and give wholesalers some discount. In this study, we implemented a multi-stage harvesting and selling perishable inventory model to pursue maximize profit and develop better policy of harvesting and selling. The varying deterioration rate follows the Weibull distribution is discussed in the model. We also compare this model with two other policies: one is to harvest and sell regularly and the other one is to presale fruits to wholesalers. In this study, numerical examples are provided to verify the model and the sensitivity analysis is conducted to determine which parameters are more influential to total profit and the harvesting and selling policy. The result shows that selling price, maximum harvest quantity and deteriorate parameter have significant effect on total profit. Hence, these parameters should be set up much carefully.

Key words: perishable products, multi-stage harvesting policy, multi-stage selling policy
論文目次 目錄
摘要.........................................i
第一章、緒論..................................... 1
第一節 研究背景與動機................................1
第二節 研究目的..........................................2
第三節 研究範圍及假設.....................................3
第四節 研究流程..........................................4
第五節 論文架構.......................................... 5
第二章、文獻探討......................................... 7
第一節 存貨..............................................7
第二節 易腐性存貨................................ 11
第三節 易腐性存貨研究....................................13
第四節 小結..........................................17
第三章、多階段採收販賣之易腐性存貨模式............18
第一節 問題定義.....18
第二節 符號說明...20
第三節 模式建構...25
第四節 模式求解...28
第五節 小結...30
第四章、模式驗證與分析...31
第一節 情境描述...31
第二節 參數設定...32
第三節 求解結果與敏感度分析...34
第四節 小結...43

第五章、結論與建議 ....44
第一節 研究成果...44
第二節 未來研究方向...45

參考文獻...46


參考文獻 參考文獻
Ahumada, O. and Villalobos, J.R. (2011). Operational model for planning the harvest and distribution of perishable agricultural products. International Journal of Production Economics, 133, 677-687.
Bakker, M., Riezebos, J. and Teunter, R.H. (2012). Review of inventory systems with deterioration since 2001. European Journal of Operational Research, 221(2), 275-284.
Covert, R.P. and Philip, G.C. (1973). An EOQ model for items with Weibull distribution. AIIE Transactions, 5(4), 323-326.
Datta, T.K. and Pal, A.K. (1990). A note on an inventory model with inventory-level-dependent demand rate. The Journal of the Operational Research Society, 41(10), 971-975.
Elsayed, E.A. and Teresi, C. (1983). Analysis of inventory of deterioration item. International Journal of Production Research, 21(4), 449-460.
Ferguson, M. and Ketzenberg, M.E. (2006). Information sharing to improve retail product freshness of perishables. Production and Operations Management, 15(1), 57-73.
Ghare, P.M. and Schrader, G.F. (1963). A model for exponentially decaying inventory. Journal of Industrial Engineering, 14(5), 238-243.
Giri, B.C. and Chaudhuri, K.S. (1998). Deterministic models of perishable inventory with stock-dependent demand rate and nonlinear holding cost. European Journal of Operational Research, 105(3), 467-474.
Giri, B.C., Chakrabarty, T. and Chaudhuri, K.S. (2000). A note on a lot sizing heuristic for deteriorating items with time-varying demands and shortages. Computers & Operations Research 27(6), 495–505
Giri, B.C., Jalan, A.K., and Chaudhuri, K.S. (2003). Economic order quantity model with Weibull deterioration distribution, shortage and ramp-type demand. International Journal of Systems Science, 34(4), 237-243.
Giri, B.C., Jalan, A.K. and Chaudhuri, K.S. (2005). An economic production lot size model with increasing demand, shortages and partial backlogging. International Transactions in Operations Research, 12(2), 235-245.
Goh, M.(1992). Some results for inventory models having inventory level dependent demand rate. International Journal of Production Economics, 27(2), 155-160.
Goyal, S.K. (1985). Economic order quantity under conditions of permissible delay in payments. The Journal of the Operational Research Society, 36(4), 335-338.
Goyal, S.K. and Gunasekaran, A. (1995). An integrated production-inventory-marketing model for deteriorating items. Computers & Industrial Engineering, 28(4), 755-762.
Gallego, G. and Hu, M. (2014). Dynamic pricing of perishable assets under competition. Management Science, 21(6), 1-19.
Ghiami, Y. and Williams, T (2015). A two echelon production inventory model for deteriorating items with multi buyers. International Journal of Production Economics, 159, 233-240.
Hariga, M. (1996). Optimal EOQ models for deteriorating items with time-varying demand. The Journal of the Operational Research Society, 47(10), 1228-1246.
Heller, T. (2002). Sales grow so does competition. Progressive Grocer, 81(14), 56-58.
Heng, J.H., Labban, J. and Linn, R.J. (1991). An order-level lot-size inventory model for deteriorating items with finite replenishment rate. Computers & Industrial Engineering, 20(2), 187-197.
Jene, S.D. and Poggi, M. (2013). Harvest planning in the Brazilian sugar cane industry via mixed integer programming. European Journal of Operational Research, 230(2), 374-384.
Kang, S. and Kim, I.T. (1983). A study on the price and production level of the deteriorating inventory system. International Journal of Production Research, 21(6), 899-908.
Konnyu, N and Toth, S.F. (2013). A cutting plane method for solving harvest scheduling models with area restrictions. European Journal of Operational Research, 228(1), 236-248.
Lau, A. and Lau, H.S. (1988). The newsboy problem with price-dependent demand distribution. IIE Transactions, 20(2), 168–175.
Li, R., Lan, H. and Mawhinney, J.R. (2010). A Review on Deteriorating Inventory Study. Journal of Service Science and Management, 3, 117-129.
Lodree, E.J. and Uzochukwu, B.M. (2008). Production planning for a deteriorating item with stochastic demand and consumer choice. International Journal of Production Economics, 116(2), 219-232.
Lo, S.T., Wee, H.M. and Huang, W.C. (2007). An integrated production-inventory model with imperfect production processes and Weibull distribution deterioration under inflation. International Journal of Production Economics, 106(1), 248-260.
Misra, R.B. (1975). Optimum production lot-size model for a system with deteriorating inventory. International Journal of Production Research, 13(5), 495-505.
Pahl, J. (2014). Integrating deterioration and lifetime constrains in production and supply chain planning: A survey. International Journal of Production Research, 238(3), 654-674.
Petsakos, A. and Rozakis, S. (2015). Calibration of agricultural risk programming models. European Journal of Operational Research, 242(2), 536-545.
Philip, G.C. (1974). A generalized EOQ model for items with Weibull distribution. AIIE Transactions, 6(2), 159-162.
Raafat, F. (1991). Survey of literature on continuously deteriorating inventory models. The Journal of the Operational Research Society, 42(1), 27-37.
Rau, H., Wu, M.Y. and Wee, H.M. (2003). Integrated inventory model for deteriorating items under a multi-echelon supply chain environment. International Journal of Production Economics, 86(2), 155-168.
Silver, E.A. (1981). Operations research in inventory management: a review and critique. Operations Research, 29(4), 628-645.

Silver, E.A., Pyke, D.F., and Peterson, R. (1998). Inventory management and production planning and scheduling. NJ: John Wiley & Sons.
San Jose´, L.A., Sicilia, J. and Garcia-Laguna, J. (2006). Analysis of an inventory system with exponential partial backordering. International Journal of Production Economics, 100(1), 76–86.
Sana, S., Goyal, S.K. and Chaudhuri, K.S. (2004). A production–inventory model for a deteriorating item with trended demand and shortages. European Journal of Operational Research, 157(2), 357-371.
Sana, S.S. and Chaudhuri K.S. (2008). A deterministic EOQ model with delays in payments and price-discount offers. European Journal of Operational Research, 184(2), 509-533
Shah, Y.K. (1977). An order-level lot-size inventory model for deteriorating items. AIIE Transactions, 9(1), 108-112.
Tadikamalla, P.R. (1978). An EOQ model for items with gamma distributed deterioration. AIIE Transactions, 10(1), 100-103.
Teng, J.T. (2002). On the economic order quantity under conditions of permissible delay in payments, The Journal of the Operational Research Society, 53(8), 915-918.
Tan, B. and Comden, N. (2012). Agricultural planning of annual plants under demand, maturation, harvest, and yield risk. European Journal of Operational Research, 220, 539-549
Urban, T.L. (1995). Inventory models with the demand rate dependent on stock and shortage levels, International Journal of Production Economics, 40(1), 21-28.
Wee, H.M. and Law, S.T. (1999). Economic production lot size for deteriorating items taking account of the time-value of money. Computers & Operations Research, 26(6), 545–558.
Wee, H.M. (1993). Economic production lot-size model for deteriorating items with partial back-ordering, Computers & Industrial Engineering, 24(3), 449–458.
Wee, H.M. and Wang, W.T. (1999). A variable production scheduling policy for deteriorating items with time-varying demand. Computers & Operations Research, 26(3), 237-254.
Wiedenmann, S. and Geldermann, J. (2015). Supply planning for processors of agricultural raw materials. European Journal of Operational Research, 242(2), 606-619.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-09-14起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-09-14起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw