進階搜尋


下載電子全文  
系統識別號 U0026-2108201422234800
論文名稱(中文) 以適應性貝氏斑紋追蹤技術評估腕部超音波影像之正中神經動態軌跡
論文名稱(英文) Assessment of Kinetic Trajectory of the Median Nerve from Wrist Ultrasound Images Using Adaptive Baysian Speckle Tracking Technique
校院名稱 成功大學
系所名稱(中) 資訊工程學系
系所名稱(英) Institute of Computer Science and Information Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 郭立凱
研究生(英文) Li-Kai Kuo
學號 P76014177
學位類別 碩士
語文別 中文
論文頁數 69頁
口試委員 指導教授-王士豪
召集委員-廖峻德
口試委員-黃執中
口試委員-林奕勳
中文關鍵字 貝氏斑紋追蹤  腕隧道症候群  正中神經  動作追蹤 
英文關鍵字 Baysian Speckle Tracking  Carpal Tunnel Syndrome  Median Nerve  Motion Tracking 
學科別分類
中文摘要 腕隧道症候群在臨床診斷上常使用物理方法檢測或者神經傳導檢查,然而此診斷方式難以提供腕隧道內的結構資訊。先前研究結果顯示超音波可應用於診斷腕隧道症候群上,然而大部分研究主要在正中神經的靜態結構上做比較,在其動態移動軌跡方面研究較無確切的證據可顯示與患者是否有差異性。為證明正中神經在腕隧道內位移的動態軌跡情形與減少實驗時間的長度以降低受測的不適感,故本研究使用Terason 與 Siemens 超音波影像系統,在受測者手指運動期間使用線性陣列探頭連續觀察正中神經在腕隧道內的位移特性。因本研究使用兩種不同超音波影像系統,因其影像解析度與超音波系統性能差異,於是提出適應性二維貝氏斑紋追蹤技術並以假體驗正此追蹤技術的正確性。此演算使用二維貝氏斑紋追蹤演算法可以降低因影像解析度與對比度之影響,因結合過去經驗與現在資訊,可以減少追蹤錯誤的機率;並使用適應性方法消除系統性能差異導致無法追蹤的情況。因此追蹤技術相較於使用標準化互相關係數演算法準確,故在腕部正中神經的量測實驗中,將之應用於追蹤正中神經的位移量與位移方向。結果顯示當手指從0度彎曲至90度時,正中神經為向尺骨與掌心方向移動,而當手指從0度伸展至90度時,正中神經為向橈骨與掌背方向移動。本研究發展二維貝氏斑紋追蹤技術應用於不同超音波系統下的量測正中神經結果,並提供了手指在連續彎曲與伸展動作後,其位移量與角度之間的變化關係與正中神經在腕部的動態軌跡。未來,可以將此追蹤方法應用於追蹤3D正中神經之軌跡,並測量腕隧道症候群病患之正中神經比較是否有相關性,以作為臨床診斷上的依據。
英文摘要 The carpal tunnel syndrome (CTS) is frequently used physical examination or nerve conduction studies in clinical diagnosis. However, these diagnostics are difficult to provide structural information within the carpal tunnel. Previous studies had been showed that ultrasound can be used in the diagnosis of CTS. However, most studies compared the median nerve (MN) in the static structure with CTS patients. The kinetic trajectory without significant evidence can show whether there are differences in the patient. In order to detect kinetic trajectory of the MN and reduce discomfort of the experimental subjects, this study use the ultrasound imaging system by Terason and Siemens. During the fingers movements, linear array probes are applied to detect the kinetic trajectory of the MN in the carpal tunnel without interruption. In this study, because image quality and system performance are different from two ultrasound imaging systems, it has to develop a technique called adaptive two dimensional Baysian speckle tracking. Two dimensional Baysian speckle tracking combines the past experience and present information to reduce the influence the effects about resolution and contrast of the image. Using tracking method of adaptive property lead to eliminate effects of the system performance. Compared to the normalized cross correlation tracking technique, the proposed tracking technology was more correctly in the phantom experiments. Applying the tracking technique to MN experiments, the kinetic trajectory of the MN moved toward the ulnar-palmar direction in fingers flexion and toward the radial-dorsal direction in fingers extension. After the continuous movements of fingers flexion and extension, the position of the MN could not go back to the original position. In this study, we verified that the adaptive Baysian speckle tracking is feasible to be made use of sensitivity detecting the kinetic trajectory and displacement of the MN in different ultrasound systems. We demonstrated the correlation in the uninterrupted movements of fingers flexion and extension at different angle. According to this study, tracking method can be applied to assess the 3D trajectory of the MN and compared to the suspected carpal tunnel syndrome for further clinical diagnosis.
論文目次 中文摘要 I
ABSTRACT II
誌謝 III
目錄 IV
表目錄 VI
圖目錄 VII
第一章:緒論 1
1.1前言 1
1.2研究背景 2
1.3文獻回顧 3
1.3.1腕隧道症候群臨床診斷方法與其缺點 3
1.3.2腕隧道症候群在超音波影像上之應用 5
1.4研究目的 8
第二章:理論背景 9
2.1超音波基本原理 9
2.2反射與折射 11
2.3超音波散射與衰減 13
2.4超音波換能器與陣列探頭 17
2.5追蹤技術 19
2.6腕隧道結構 23
第三章:材料與方法 26
3.1追蹤技術 26
3.2以假體驗證追蹤程式準確性 34
3.3腕部正中神經之位移量測 38
第四章:結果與討論 39
4.1超音波探頭解析度量測結果 39
4.2假體之位移偵測結果 42
4.2.1 Terason 超音波影像追蹤結果 42
4.2.2 Siemens 超音波影像追蹤結果 45
4.3腕部正中神經之位移偵測結果 49
4.4討論 59
4.4.1超音波探頭解析度量測結果 59
4.4.2假體之位移偵測結果 59
4.4.3腕部正中神經之位移偵測結果 61
第五章:結論與未來工作 64
5.1結論 64
5.2未來工作 65
參考文獻 66
參考文獻 [1]K. K. Shung, “Diagnostic Ultrasound: Imaging and Blood Flow Measurements,” CRC Press Boca Raton, FL, 2006.
[2]F. S. Foster, C. J. Pavlin, K. A. Harasiewicz, D. A. Christopher, and D. H. Turnbull, “Advances in ultrasound biomicroscopy,” Ultrasound in Medicine & Biology, vol. 26, pp. 1-27, 2000.
[3]D. A. Knapik, B. Starkoski, C. J. Pavlin, and F. S. Foster, “A realtime 200 MHz ultrasound B-scan imager,” IEEE Ultrasonics Symposium, vol. 2, pp. 1457-1460, 1997.
[4]J. F. Greenleaf, “Tissue characterization with ultrasound,” CRC Press Boca Raton, FL, 1986.
[5]J. Meunier and M. Bertrand, “Ultrasonic texture motion analysis: theory and simulation,” Medical Imaging, IEEE Transactions on, vol. 14, pp. 293-300, 1995.
[6]G. B. Pfeffer, R. H. Gelberman, J. H. Boyes, and B. Rydevik, “The history of carpal tunnnel syndrome,” British & European Journal of Hand Surgery, vol. 13, pp. 28-34, 1988.
[7]J. J. Putnam, “A series of cases of paraesthesia, mainly of the hands, of periodic recurrence, and possibly of vasomotor origin,” New York Archive of Medicine, vol. 4, pp. 147-162, 1880.
[8]J. N. Katz and B. P. Simmons, “Carpal Tunnel Syndrome,” New England Journal of Medicine, vol. 346, pp. 1807-1812, 2002.
[9]Scott, K. R., Kothari, and M. J, “Treatment of carpal tunnel syndrome,” 2009.
[10]G. S. Phalen, “Spontaneous compression of the median nerve at the wrist,” JAMA-Journal America Medicine Association, vol. 145, pp. 1128-1132, 1951.
[11]G. S. Phalen, W. J. Gardner, and A. A. L. Londe, “Neuropathy of the median nerve due to compression beneath the transverse carpal ligament,” Journal Bone Joint Surgery America, vol. 32A, pp. 109-112, 1950.
[12]G. S. Phalen and J. I. Kendrick, “Compression neuropathy of the median nerve in the carpal tunnel,” JAMA- Journal America Medicine Association, vol. 164, pp. 524-530, 1957.
[13]D. Simovic and D. H. Weinberg, “Carpal tunnel syndrome,” Archive Neurology-Chicago, vol. 57, pp. 754-755, 2000.
[14]J. D. Bland, “Carpal tunnel syndrome,” BMJ, vol. 335, pp. 343-6, 2007.
[15]J. C. MacDermid and J. Wessel, “Clinical diagnosis of carpal tunnel syndrome: a systematic review,” Journal of Hand Therapy, vol. 17, pp. 309-319, 2004.
[16]J. Stewart and A. Eisen, “Tinel's sign and the carpal tunnel syndrome,” British Medical Journal, vol. 2, p. 1125, 1978.
[17]J. N. Katz, M. G. Larson, A. Sabra, C. Krarup, C. R. Stirrat, R. Sethi, et al., “The carpal tunnel syndrome: diagnostic utility of the history and physical examination findings,” Annals of Internal Medicine, vol. 112, pp. 321-327, 1990.
[18]R. Beekman and L. H. Visser, “Sonography in the diagnosis of carpal tunnel syndrome: a critical review of the literature,” Muscle & Nerve, vol. 27, pp. 26-33, 2003.
[19]P. Chen, N. Maklad, M. Redwine, and D. Zelitt, “Dynamic high-resolution sonography of the carpal tunnel,” American Journal of Roentgenology, vol. 168, pp. 533-537, 1997.
[20]A. B. Grundberg, “Carpal tunnel decompression in site of normal electromyography,” The Journal of Hand Surgery, vol. 8, pp. 348-349, 1983.
[21]I. Duncan, P. Sullivan, and F. Lomas, “Sonography in the diagnosis of carpal tunnel syndrome,” American Journal of Roentgenology, vol. 173, pp. 681-684, 1999.
[22]W. Buchberger, G. Schön, K. Strasser, and W. Jungwirth, “High-resolution ultrasonography of the carpal tunnel,” Journal of Ultrasound in Medicine, vol. 10, pp. 531-537, 1991.
[23]W. Buchberger, W. Judmaier, G. Birbamer, M. Lener, and C. Schmidauer, “Carpal tunnel syndrome: diagnosis with high-resolution sonography,” American Journal of Roentgenology, vol. 159, pp. 793-798, 1992.
[24]E. Silvestri, C. Martinoli, L. E. Derchi, M. Bertolotto, M. Chiaramondia, and I. Rosenberg, “Echotexture of peripheral nerves: correlation between US and histologic findings and criteria to differentiate tendons,” Radiology, vol. 197, pp. 291-296, 1995.
[25]D. Lee, M. T. van Holsbeeck, P. K. Janevski, D. L. Ganos, D. M. Ditmars, and V. B. Darian, “Diagnosis of carpal tunnel syndrome: ultrasound versus electromyography,” Radiologic Clinics of North America, vol. 37, pp. 859-872, 1999.
[26]S. Wong, J. Griffith, A. Hui, A. Tang, and K. Wong, “Discriminatory sonographic criteria for the diagnosis of carpal tunnel syndrome,” Arthritis & Rheumatism, vol. 46, pp. 1914-1921, 2002.
[27]H. R. Ziswiler, S. Reichenbach, E. Vögelin, L. M. Bachmann, P. M. Villiger, and P. Jüni, “Diagnostic value of sonography in patients with suspected carpal tunnel syndrome: a prospective study,” Arthritis & Rheumatism, vol. 52, pp. 304-311, 2005.
[28]Y. Yoshii, C. Zhao, K. D. Zhao, M. E. Zobitz, K. N. An, and P. C. Amadio, “The effect of wrist position on the relative motion of tendon, nerve, and subsynovial connective tissue within the carpal tunnel in a human cadaver model,” Journal of Orthopaedic Research, vol. 26, pp. 1153-1158, 2008.
[29]Y. Yoshii, H. R. Villarraga, J. Henderson, C. Zhao, K.-N. An, and P. C. Amadio, “Ultrasound assessment of the displacement and deformation of the median nerve in the human carpal tunnel with active finger motion,” The Journal of Bone & Joint Surgery, vol. 91, pp. 2922-2930, 2009.
[30]M. H. van Doesburg, Y. Yoshii, H. R. Villarraga, J. Henderson, S. S. Cha, K. N. An, et al., “Median nerve deformation and displacement in the carpal tunnel during index finger and thumb motion,” Journal of Orthopaedic Research, vol. 28, pp. 1387-1390, 2010.
[31]M. H. van Doesburg, J. Henderson, Y. Yoshii, A. B. M. van der Molen, S. S. Cha, K. N. An, et al., “Median nerve deformation in differential finger motions: ultrasonographic comparison of carpal tunnel syndrome patients and healthy controls,” Journal of Orthopaedic Research, vol. 30, pp. 643-648, 2012.
[32]Y. Yoshii, T. Ishii, W. L. Tung, S. Sakai, and P. C. Amadio, “Median nerve deformation and displacement in the carpal tunnel during finger motion,” Journal of Orthopaedic Research, vol. 31, pp. 1876-1880, 2013.
[33]謝媺育, “以高頻超音波逆散射訊號追蹤腕部神經之運動情形”,碩士,資訊工程學系碩博士班,國立成功大學,台南市, 2011.
[34]Y.-H. Lin, M.-Y. Hsieh, F.-C. Su, and S.-H. Wang, “Assessment of the Kinetic Trajectory of the Median Nerve in the Wrist by High-Frequency Ultrasound,” Sensors, vol. 14, pp. 7738-7752, 2014.
[35]林奕勳,“以高頻超音波技術定量評估生物組織與材料特性” ,博士,資訊工程學系碩博士班,國立成功大學,台南市,2013.
[36]P. M. C. Morse and K. U. Ingard, “Theoretical Acoustics: Princeton University Press,” 1986.
[37]M. S. Lew, N. Sube, and T. S. Huang, “Improving visual matching,” in Computer Vision and Pattern Recognition, 2000. Proceedings. IEEE Conference on, 2000, pp. 58-65.
[38]J. L. Myers, A. Well, and R. F. Lorch, “Research design and statistical analysis,” 2010.
[39]B. Byram, G. E. Trahey, and M. Palmeri, “Bayesian speckle tracking. Part I: an implementable perturbation to the likelihood function for ultrasound displacement estimation,” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 60, 2013.
[40]B. Byram, G. E. Trahey, and M. Palmeri, “Bayesian speckle tracking. Part II: biased ultrasound displacement estimation,” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 60, 2013.
[41]B. H. Friemel, L. N. Bohs, K. R. Nightingale, and G. E. Trahey, “Speckle decorrelation due to two-dimensional flow gradients,” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 45, pp. 317-327, 1998.
[42]“University of Maryland- Medical Center,” http://umm.edu/health/medical/reports/articles/carpal-tunnel-syndrome.
[43]“StudyBlue,”http://www.studyblue.com/notes/note/n/med-surg-exam-2/deck/5771856.
[44] “Forearm and Hand,” http://quizlet.com/28705379/forearm-and-hand-flash-cards/.
[45]“CIRS, Tissue Simulation & Phantom Technology,” http://www.cirsinc.com/products/modality/67/multi-purpose-multi-tissue-ultrasound-phantom/.
[46]“Siemens,” http://www.siemens.com/entry/cc/en/.
[47]“Terason,” http://www.terason.com/.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-08-29起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-08-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw