進階搜尋


下載電子全文  
系統識別號 U0026-2108201422154900
論文名稱(中文) 金雀異黃甙模印高分子之製備及特性研究
論文名稱(英文) The study of Fabrication and Characteristics of Genistin-Imprinted Polymers
校院名稱 成功大學
系所名稱(中) 化學工程學系
系所名稱(英) Department of Chemical Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 李宥辰
研究生(英文) Yu-Chen Li
電子信箱 johnnylee7788@hotmail.com
學號 N36011104
學位類別 碩士
語文別 中文
論文頁數 236頁
口試委員 指導教授-楊明長
口試委員-周澤川
口試委員-林宗榮
口試委員-歐信宏
口試委員-陳文正
中文關鍵字 金雀異黃甙  分子模印高分子  沉澱聚合 
英文關鍵字 Genistin  molecularly imprinted  polymerprecipitation polymerization 
學科別分類
中文摘要 金雀異黃甙(ㄉㄞˋ)是大豆異黃酮類中含量最多的營養成份,具有抗癌、預防心血管疾病、緩解女性的更年期、抗氧化、預防骨質疏鬆的功效。
本研究製備金雀異黃甙模印高分子,利用其對金雀異黃甙分子的高親合力,以低成本、簡單步驟的新技術,從大豆和干擾物中,大規模分離和提煉金雀異黃甙,取代傳統技術耗能且耗時的分離純化程序。
本研究以金雀異黃甙為模版分子,以沉澱聚合法製備金雀異黃甙模印高分子,利用批式再吸附法測試不同合成條件下,金雀異黃甙模印高分子的效能。以乙二醇二甲基丙烯酸脂(EGDMA)為交聯劑和2-二甲氨基乙基甲基丙烯酸(DMAEMA)為功能性單體,乙腈為溶劑時,隨著功能性單體對交聯劑莫耳比例,和模版分子對功能性單體莫耳比例,和模版分子濃度增加時,有最大的平模印因子,且以有機相溶液製備高分子的平均模印因子比在水相高。當功能性單體和交聯劑的莫耳比例為3:7時,模版分子和功能性單體的莫耳比例為1:8,模版濃度為3.13 mM,溶劑為乙腈時,最高模印因子約為2.4,最高的平均模印因子約為2。
根據親合力圖譜法,模印高分子比非模印高分子有較高的吸附活性座濃度,雖然平均親合係數變化不大。
在有大豆異黃甙的干擾系統中,金雀異黃甙模印高分子的比選擇率和分離因子都比非分子模印高分子高。比選擇率和分離因子高時,平均模印因子也較高。本研究中,金雀異黃甙模印高分子最高的比選擇率和分離因子,分別為1.7和 4.2。
以金雀異黃甙模印高分子萃取大豆萃取液,結果顯示大豆萃取液中金雀異黃甙莫耳分率萃取前和萃取後分別為0.55和0.74,且金雀異黃甙回收率有20%。
以金雀異黃甙模印高分子作為管柱層析分離法中的管柱填充物材料,分離大豆萃取液中的異黃酮素,結果顯示金雀異黃甙滯留時間約15小時,大豆異黃甙的滯留時間約2小時,此現象顯示合成的金雀異黃甙模印高分子有商業應用的發展潛力。
英文摘要 In this study, a new technique which was called molecularly imprinted technique (MIT) might replace the traditional technique, which was energy and time consuming, with low cost and simple process. Genistin (Gi) was chosen as template to prepare the molecularly imprinted polymer (MIP) by precipitation polymerization. The batch rebinding method is applied to investigate the performance of the molecularly imprinted polymer in various syn-thesis conditions. When Ethylene glycol dimethacrylate (EGDMA) and 2-Dimethylamino ethyl methacrylate (DMAEMA) were used for cross-linker and functional monomer, respec-tively, there is a maximum average imprinting factor as an increase in the molar ratio of functional monomer to cross-linker, the molar ratio of template molecule and functional monomer, or concentration of template. The average imprinting factor of the polymer fabri-cated in organic solution is larger than the polymer fabricated in aqueous solution. The op-timum molar ratio of functional monomer to cross-linker, the molar ratio of template mole-cule and functional monomer, and template concentration were 3:7, 1:8 and 3.13 mM, re-spectively, in acetonitrile solution. The results showed the highest imprinting factor and av-erage imprinting factor were 2.4, and 2.0, respectively. The highest specific selectivity and separation factor among all genistin imprinted polymer were 1.7 and 4.2, respectively.When the genistin imprinted polymer was used as the packing material for the pack column in chromatography separation, the retention time for genistin and daidzin were about 15 and 2 hours, respectively, with soybean extract. The performance of synthesized genistin imprinted polymer showed a good potential in commercial application.
論文目次 中文摘要 I
誌謝 XI
目錄 XIV
圖目錄 XIX
表目錄 XXXII
第一章 緒論 1
1.1 前言 1
1.2 大豆簡介 3
1.3 類黃酮(flavonoids) 5
1.4 異黃酮素(isoflavones) 6
1.4.1 異黃酮素結構 6
1.4.2 異黃酮之分析方法 8
1.4.3 異黃酮素萃取方法 10
1.5 研究動機 14
第二章 原理 18
2.1 分子模印高分子 18
2.1.1 分子模印高分子之起源與發展 18
2.1.2 分子模印高分子分類 23
2.1.3 分子模印高分子原理 27
2.1.4 分子模印高分子製備方法 33
2.2 製備分子模印高分子的要素 48
2.2.1 目標分子(target molecule) 49
2.2.2 功能性單體(functional monomer) 49
2.2.3 交聯劑(cross-linker) 59
2.2.4 溶劑 63
2.2.5起始劑(initiator) 66
2.3 分子模印高分子的應用 67
2.4 儀器原理 70
2.4.1 傅立葉轉換紅外光譜儀 70
2.4.2 高效能液相層析儀(High performance liquid chromatography) 72
2.4.3 表面積及奈米孔徑分析儀(Surface area and poresimetric analyzer) 77
2.5 分子模印高分子效能測試 87
2.5.1 批次再吸附方法(batch rebinding method) 88
2.5.2 層析方法(chromatographic method) 94
第三章 實驗設備與方法 95
3.1 實驗藥品 95
3.2 實驗儀器 98
3.3 高效能液相層析儀(HPLC) 99
3.3.1 高效能液相層析儀之操作 100
3.3.2 校正曲線 (Calibration curve)之製作 100
3.4 金雀異黃甙分子模印高分子及非分子模印高分子之製備 101
3.4.1 沉澱聚合法聚合分子模印高分子 (molecularly imprinted polymer) 101
3.4.2 沉澱聚合法聚合非分子模印高分子 (non-molecularly imprinted polymer) 102
3.4.3 清洗分子模印高分子及非分子模印高分子 102
3.5 以吸附再脫附方法分析分子模印高分子效能 105
3.5.1 單一成份系統 105
3.5.2 干擾物系統 105
3.6 以層析管柱法分析分子模印高分子效能 106
3.6.1 填充管柱 106
3.6.2 管柱效能測試 106
3.7 分子模印高分子作為填充顆粒之應用 107
3.7.1 以溶劑萃取大豆異黃酮素 107
3.7.2 以金雀異黃甙分子模印高分子萃取 108
3.7.3 以金雀異黃甙分子模印高分子以層析方式分離 108
3.8 分子模印高分子特性分析 109
3.8.1 掃描式電子顯微鏡 109
3.8.2 傅立葉轉換紅外線光譜分析 109
3.8.3 熱重分析儀(TGA) 109
3.8.4 穿透式電子顯微鏡分析 110
3.8.5 表面積與孔洞分析 110
3.8.6 紫外光-可見光分光光度計 (Ultraviolet–visible spectroscopy) 111
3.8.7 示差掃描熱卡分析儀 (Differential Scanning Calorimetry, DSC) 111
第四章 實驗結果與討論 112
4.1 待測物校正曲線的製作 112
4.1.1 金雀異黃甙之校正曲線 114
4.1.2 金雀異黃酮之校正曲線 116
4.1.3 大豆異黃甙之校正曲線. 117
4.2 交聯劑和功能性單體之研究 119
4.2.1 交聯劑 119
4.2.1.1 交聯劑之特性 119
4.2.1.2 交聯劑之吸附效能 124
4.2.2 以不同溶劑製備交聯劑 125
4.2.3 功能性單體 126
4.2.3.1 功能性單體之吸附測試 126
4.2.4 綜合比較 132
4.2.4.1 最高模印因子的交聯劑與功能性單體 132
4.2.4.2 高分子粒徑和吸附量 137
4.3 功能性單體和交聯劑組成比例之影響 140
4.3.1 功能性單體和交聯劑組成特性 140
4.3.2 功能性單體和交聯劑組成在單成份系統中效能測試 145
4.3.3 功能性單體和交聯劑組成在干擾物系統中效能測試 153
4.4 模版分子和功能性單體組成比例 156
4.4.1 模版分子和功能性單體組成特性 156
4.4.2 單成份系統效能測試 161
4.4.3 干擾物系統效能測試 168
4.5 溶劑 171
4.5.1 特性分析 171
4.5.2 單成份系統效能測試 179
4.5.3 干擾物系統效能測試 188
4.6 模版分子濃度 191
4.6.1 特性分析 191
4.6.2 單成份系統效能測試 196
4.6.3 干擾物系統效能測試 202
4.7 分子模印高分子實際應用 205
4.7.1 批式吸附再脫附 205
4.7.2 管柱層析分離 208
4.8 穩定性測試 209
4.8.1 熱重分析儀 209
4.8.2 示差掃描熱量分析儀 210
第五章 結論 212
參考文獻 214
附錄A 參數總整理 228
附錄B 不同物質的吸收波長 232
附錄C 傅立葉轉換紅外光譜儀(FTIR) 234
自述 236
參考文獻 1. (a) Hudson, P. J., Recombinant antibody fragments. Current Opinion in Biotechnology 1998, 9 (4), 395-402; (b) Winter, G.; Griffiths, A. D.; Hawkins, R. E.; Hoogenboom, H. R., Making Antibodies by Phage Display Technology. Annual Review of Immunology 1994, 12 (1), 433-455.
2. Yano, K.; Karube, I., Molecularly imprinted polymers for biosensor applications. TrAC Trends in Analytical Chemistry 1999, 18 (3), 199-204.
3. 王思惠, 應用分子模版從不同大豆溶液中選擇性萃取異黃酮素. 國立成功大學化學工程學研究所碩士論文. 2007
4. 全民健康网 大豆. http://baike.qm120.com/shsh/yins/dado/.
5. 曾富生、吳詩都 大豆. http://www.afa.gov.tw/public_index.asp?CatID=112.
6. 朝陽產業 大豆深加工21世紀的朝陽產業. http://drtyh123.myweb.hinet.net/21.htm.
7. Messina, M.; Kucuk, O.; Lampe, J. W., An overview of the health effects of isoflavones with an emphasis on prostate cancer risk and prostate-specific antigen levels. Journal of Aoac International 2006, 89 (4), 1121-1134.
8. Parkin, D. M.; Bray, F.; Ferlay, J.; Pisani, P., Global cancer statistics, 2002. Ca-Cancer J Clin 2005, 55 (2), 74-108.
9. HoHoHoYa 類黃酮. http://baike.baidu.com/view/737788.htm.
10. twgiftshop 認識類黃酮(flavoniods). http://twgiftshop.pixnet.net/blog/post/23144857-%E8%AA%8D%E8%AD%98%E9%A1%9E%E9%BB%83%E9%85%AE%EF%BC%88flavonoids%EF%BC%89.
11. 郭建平 孙其荣,葛根化学成分及临床应用研究概况. 药学实践杂志 1996年03期.
12. Rostagno, M. A.; Palma, M.; Barroso, C. G., Microwave assisted extraction of soy isoflavones. Anal Chim Acta 2007, 588 (2), 274-82.
13. Wu, Q.; Wang, M.; Simon, J. E., Analytical methods to determine phytoestrogenic compounds. Journal of Chromatography B 2004, 812 (1–2), 325-355.
14. Aaby, K.; Hvattum, E.; Skrede, G., Analysis of Flavonoids and Other Phenolic Compounds Using High-Performance Liquid Chromatography with Coulometric Array Detection:  Relationship to Antioxidant Activity. Journal of Agricultural and Food Chemistry 2004, 52 (15), 4595-4603.
15. Rostagno, M. A.; Palma, M.; Barroso, C. G., Fast analysis of soy isoflavones by high-performance liquid chromatography with monolithic columns. Analytica Chimica Acta 2007, 582 (2), 243-249.
16. Griffith, A. P.; Collison, M. W., Improved methods for the extraction and analysis of isoflavones from soy-containing foods and nutritional supplements by reversed-phase high-performance liquid chromatography and liquid chromatography–mass spectrometry. Journal of Chromatography A 2001, 913 (1–2), 397-413.
17. (a) Lee, S. J.; Yan, W.; Ahn, J. K.; Chung, I. M., Effects of year, site, genotype and their interactions on various soybean isoflavones. Field Crops Research 2003, 81 (2–3), 181-192; (b) Yen, G.-C.; Kao, C.-H., Influence of Processing Conditions on Isoflavones Content of Soybean Products. In Bioactive Compounds in Foods, American Chemical Society: 2002; Vol. 816, pp 73-84.
18. Murphy, P. A.; Song, T.; Buseman, G.; Barua, K., Isoflavones in Soy-Based Infant Formulas. Journal of Agricultural and Food Chemistry 1997, 45 (12), 4635-4638.
19. (a) Nguyenle, T.; Wang, E.; Cheung, A. P., An investigation on the extraction and concentration of isoflavones in soy-based products. Journal of Pharmaceutical and Biomedical Analysis 1995, 14 (1–2), 221-232; (b) Hutabarat, L. S.; Greenfield, H.; Mulholland, M., Quantitative determination of isoflavones and coumestrol in soybean by column liquid chromatography. Journal of Chromatography A 2000, 886 (1–2), 55-63.
20. Grün, I. U.; Adhikari, K.; Li, C.; Li, Y.; Lin, B.; Zhang, J.; Fernando, L. N., Changes in the Profile of Genistein, Daidzein, and Their Conjugates during Thermal Processing of Tofu†. Journal of Agricultural and Food Chemistry 2001, 49 (6), 2839-2843.
21. (a) Liggins, J.; Bluck, L. J. C.; Runswick, S.; Atkinson, C.; Coward, W. A.; Bingham, S. A., Daidzein and genistein content of fruits and nuts. The Journal of Nutritional Biochemistry 2000, 11 (6), 326-331; (b) Luthria, D. L.; Biswas, R.; Natarajan, S., Comparison of extraction solvents and techniques used for the assay of isoflavones from soybean. Food Chemistry 2007, 105 (1), 325-333.
22. (a) Rostagno, M. A.; Palma, M.; Barroso, C. G., Ultrasound-assisted extraction of soy isoflavones. Journal of Chromatography A 2003, 1012 (2), 119-128; (b) Wu, Y.; Wang, X.; Fan, E., Optimisation of Ultrasound-assisted Extraction of Puerarin and Total Isoflavones from Puerariae Lobatae Radix (Pueraria lobata (Wild.) Ohwi) with Response Surface Methodology. Phytochemical Analysis 2012, 23 (5), 513-519.
23. (a) Chandra, A.; Nair, M. G., Supercritical Carbon Dioxide Extraction of Daidzein and Genistein from Soybean Products. Phytochemical Analysis 1996, 7 (5), 259-262; (b) Rostagno, M. c. A.; Araújo, J. M. A.; Sandi, D., Supercritical fluid extraction of isoflavones from soybean flour. Food Chemistry 2002, 78 (1), 111-117.
24. (a) Rostagno, M. A.; Palma, M.; Barroso, C. G., Pressurized liquid extraction of isoflavones from soybeans. Analytica Chimica Acta 2004, 522 (2), 169-177; (b) Delgado-Zamarreño, M. M.; Pérez-Martín, L.; Bustamante-Rangel, M.; Carabias-Martínez, R., Pressurized liquid extraction as a sample preparation method for the analysis of isoflavones in pulses. Anal Bioanal Chem 2012, 404 (2), 361-366.
25. (a) Ma, X.; Tu, P.; Chen, Y.; Zhang, T.; Wei, Y.; Ito, Y., Preparative isolation and purification of two isoflavones from Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao by high-speed counter-current chromatography. Journal of Chromatography A 2003, 992 (1–2), 193-197; (b) Du, Q.; Li, Z.; Ito, Y., Preparative separation of isoflavone components in soybeans using high-speed counter-current chromatography. Journal of Chromatography A 2001, 923 (1–2), 271-274; (c) Yang, F.; Ma, Y.; Ito, Y., Separation and purification of isoflavones from a crude soybean extract by high-speed counter-current chromatography. Journal of Chromatography A 2001, 928 (2), 163-170.
26. Rostagno, M. A.; Villares, A.; Guillamón, E.; García-Lafuente, A.; Martínez, J. A., Sample preparation for the analysis of isoflavones from soybeans and soy foods. Journal of Chromatography A 2009, 1216 (1), 2-29.
27. Sato, S.; Hiroe, K.; Kumazawa, T.; Jun-ichi, O., Total synthesis of two isoflavone C-glycosides: genistein and orobol 8-C-β-d-glucopyranosides. Carbohydrate Research 2006, 341 (9), 1091-1095.
28. 食品資訊雜誌 第231期.大豆異黃酮(Isoflavones). http://www.champion-bio.com/cetacean/front/bin/ptdetail.phtml?Part=pdt55&Rcg=103385.
29. 全廣食品有限公司. 大豆異黃酮. http://chinese.104web.com.tw/cetacean/front/bin/ptdetail.phtml?Part=003-1.
30. 的部落格, c. b. 成年女性不可不知~大豆異黃酮的功效. http://bear913028.pixnet.net/blog/post/42480926-%E6%88%90%E5%B9%B4%E5%A5%B3%E6%80%A7%E4%B8%8D%E5%8F%AF%E4%B8%8D%E7%9F%A5%EF%BD%9E%E5%A4%A7%E8%B1%86%E7%95%B0%E9%BB%83%E9%85%AE%E7%9A%84%E5%8A%9F%E6%95%88%EF%BC%81.
31. 產品開發部, 美. 信. c. U. I. 大豆異黃酮 soyisoflavone. http://www.confidenceusa.com/site/big5/ref-femon9-soy-isoflavone.php.
32. Rabiau, N.; Kossaï, M.; Braud, M.; Chalabi, N.; Satih, S.; Bignon, Y.-J.; Bernard-Gallon, D. J., Genistein and daidzein act on a panel of genes implicated in cell cycle and angiogenesis by Polymerase Chain Reaction arrays in human prostate cancer cell lines. Cancer Epidemiology 2010, 34 (2), 200-206.
33. 萬博超、陳敬哲 生物類黃酮素 自然界最佳抗氧化劑. http://mag.udn.com/mag/life/storypage.jsp?f_ART_ID=448380.
34. 食品資訊雜誌 大豆異黃酮(Isoflavones). http://www.champion-bio.com/cetacean/front/bin/ptdetail.phtml?Part=pdt55&Rcg=103385.
35. Rishi, R. K., Phytoestrogens in health and illness. Indian Journal of Pharmacology 2002, 34 (5), 311-320.
36. Richelle, M.; Pridmore-Merten, S.; Bodenstab, S.; Enslen, M.; Offord, E. A., Hydrolysis of Isoflavone Glycosides to Aglycones by β-Glycosidase Does Not Alter Plasma and Urine Isoflavone Pharmacokinetics in Postmenopausal Women. The Journal of Nutrition 2002, 132 (9), 2587-2592.
37. de Jong, L. A. A.; Uges, D. R. A.; Franke, J. P.; Bischoff, R., Receptor–ligand binding assays: Technologies and Applications. Journal of Chromatography B 2005, 829 (1–2), 1-25.
38. Opharpt, E. m. C. C. E. Mechanism of Enzyme Action. http://www.elmhurst.edu/~chm/vchembook/571lockkey.html.
39. M.S許玉瑩, 利用矽氧烷化合物製備分子拓印高分子. 國立中央大學化學工程與材料工程研究所碩士論文. 2005
40. Mudd, S., A hypothetical mechanism of antibody formation. Journal of Immunology 1932, 23 (6), 423-427.
41. Pauling, L., A theory of the structure and process of formation of antibodies. Journal of the American Chemical Society 1940, 62, 2643-2657.
42. Sellergren, B., Molecularly imprinted polymers: man-made mimics of antibodies and their application in analytical chemistry. Elsevier: 2000; Vol. 23.
43. Dickey, F. H., THE PREPARATION OF SPECIFIC ADSORBENTS. Proceedings of the National Academy of Sciences of the United States of America 1949, 35 (5), 227-229.
44. Wulff, G.; Sarhan, A., USE OF POLYMERS WITH ENZYME-ANALOGOUS STRUCTURES FOR RESOLUTION OF RACEMATES. Angewandte Chemie-International Edition 1972, 11 (4), 341-&.
45. (a) Norrlow, O.; Glad, M.; Mosbach, K., ACRYLIC POLYMER PREPARATIONS CONTAINING RECOGNITION SITES OBTAINED BY IMPRINTING WITH SUBSTRATES. Journal of Chromatography 1984, 299 (1), 29-41; (b) Oshannessy, D. J.; Ekberg, B.; Mosbach, K., MOLECULAR IMPRINTING OF AMINO-ACID DERIVATIVES AT LOW-TEMPERATURE (0-DEGREES-C) USING PHOTOLYTIC HOMOLYSIS OF AZOBISNITRILES. Analytical Biochemistry 1989, 177 (1), 144-149.
46. Mayes, A. G.; Whitcombe, M. J., Synthetic strategies for the generation of molecularly imprinted organic polymers. Advanced Drug Delivery Reviews 2005, 57 (12), 1742-1778.
47. Wulff, G.; Vesper, W.; Grobe-Einsler, R.; Sarhan, A., Enzyme-analogue built polymers, 4. On the synthesis of polymers containing chiral cavities and their use for the resolution of racemates. Die Makromolekulare Chemie 1977, 178 (10), 2799-2816.
48. Kugimiya, A.; Matsui, J.; Abe, H.; Aburatani, M.; Takeuchi, T., Synthesis of castasterone selective polymers prepared by molecular imprinting. Analytica Chimica Acta 1998, 365 (1–3), 75-79.
49. Caro, E.; Masqué, N.; Marcé, R. M.; Borrull, F.; Cormack, P. A. G.; Sherrington, D. C., Non-covalent and semi-covalent molecularly imprinted polymers for selective on-line solid-phase extraction of 4-nitrophenol from water samples. Journal of Chromatography A 2002, 963 (1–2), 169-178.
50. Petcu, M.; Cooney, J.; Cook, C.; Lauren, D.; Schaare, P.; Holland, P., Molecular imprinting of a small substituted phenol of biological importance. Analytica Chimica Acta 2001, 435 (1), 49-55.
51. Whitcombe, M. J.; Rodriguez, M. E.; Villar, P.; Vulfson, E. N., A New Method for the Introduction of Recognition Site Functionality into Polymers Prepared by Molecular Imprinting: Synthesis and Characterization of Polymeric Receptors for Cholesterol. Journal of the American Chemical Society 1995, 117 (27), 7105-7111.
52. Kirsch, N.; Alexander, C.; Davies, S.; Whitcombe, M. J., Sacrificial spacer and non-covalent routes toward the molecular imprinting of “poorly-functionalized” N-heterocycles. Analytica Chimica Acta 2004, 504 (1), 63-71.
53. Ramström, O.; Nicholls, I. A.; Mosbach, K., Synthetic peptide receptor mimics: highly stereoselective recognition in non-covalent molecularly imprinted polymers. Tetrahedron: Asymmetry 1994, 5 (4), 649-656.
54. 葉威明, 以分子模版修飾電極感測嗎啡及膽固醇. 國立台灣大學化學工程學研究所碩士論文 2005.
55. 林瑋哲, 發展新穎噴霧流化床技術製備微奈米球形金雀異黃酮分子模版應用於豆漿中之記憶性固相萃取. 國立成功大學化學工程研究所碩士論文 2008.
56. Zaltsman, S. M. a. , Molecular imprintging of sol gel polymers for the detection of paraoxon in water. Intern. J. Environ. Anal. Chem. Vol. 83, No. 7–8, pp. 671–680, July–August 2003.
57. Contributors, W. Radical polymerization. http://en.wikipedia.org/wiki/Radical_polymerization.
58. Vlatakis, G.; Andersson, L. I.; Muller, R.; Mosbach, K., Drug assay using antibody mimics made by molecullar imprinting. Nature 1993, 361 (6413), 645-647.
59. 維基百科編者, 聚合物. http://zh.wikipedia.org/w/index.php?title=%E8%81%9A%E5%90%88%E7%89%A9&oldid=30541051.
60. 李達人, 以溶膠-凝膠法製備分子模版感測肌酸酐. 國立台灣大學化學工程學研究所碩士論文 2009.
61. Katz, A.; Davis, M. E., Molecular imprinting of bulk, microporous silica. Nature 2000, 403 (6767), 286-289.
62. Mayes, A. G.; Mosbach, K., Molecularly Imprinted Polymer Beads:  Suspension Polymerization Using a Liquid Perfluorocarbon as the Dispersing Phase. Analytical Chemistry 1996, 68 (21), 3769-3774.
63. Zhang, L.; Cheng, G.; Fu, C., Synthesis and characteristics of tyrosine imprinted beads via suspension polymerization. Reactive and Functional Polymers 2003, 56 (3), 167-173.
64. Lu, S.; Cheng, G.; Zhang, H.; Pang, X., Preparation and characteristics of Tryptophan-imprinted Fe3O4/P(TRIM) composite microspheres with magnetic susceptibility by inverse emulsion–suspension polymerization. Journal of Applied Polymer Science 2006, 99 (6), 3241-3250.
65. Li, K.; Stöver, H. D. H., Synthesis of monodisperse poly(divinylbenzene) microspheres. Journal of Polymer Science Part A: Polymer Chemistry 1993, 31 (13), 3257-3263.
66. Ye, L.; Mosbach, K., Molecularly imprinted microspheres as antibody binding mimics. Reactive and Functional Polymers 2001, 48 (1–3), 149-157.
67. Puoci, F.; Iemma, F.; Muzzalupo, R.; Spizzirri, U. G.; Trombino, S.; Cassano, R.; Picci, N., Spherical Molecularly Imprinted Polymers (SMIPs) via a Novel Precipitation Polymerization in the Controlled Delivery of Sulfasalazine. Macromolecular Bioscience 2004, 4 (1), 22-26.
68. Jiang, Y.; Tong, A.-J., Synthesis of molecularly imprinted microspheres for recognition of trans-aconitic acid. Journal of Applied Polymer Science 2004, 94 (2), 542-547.
69. Ye, L.; Cormack, P. A. G.; Mosbach, K., Molecular imprinting on microgel spheres. Analytica Chimica Acta 2001, 435 (1), 187-196.
70. Nakamura, M.; Ono, M.; Nakajima, T.; Ito, Y.; Aketo, T.; Haginaka, J., Uniformly sized molecularly imprinted polymer for atropine and its application to the determination of atropine and scopolamine in pharmaceutical preparations containing Scopolia extract. Journal of Pharmaceutical and Biomedical Analysis 2005, 37 (2), 231-237.
71. Haginaka, J.; Kagawa, C., Uniformly sized molecularly imprinted polymer for d-chlorpheniramine: Evaluation of retention and molecular recognition properties in an aqueous mobile phase. Journal of Chromatography A 2002, 948 (1–2), 77-84.
72. Haginaka, J.; Sakai, Y., Uniform-sized molecularly imprinted polymer material for (S)-propranolol. Journal of Pharmaceutical and Biomedical Analysis 2000, 22 (6), 899-907.
73. Haginaka, J., Monodispersed, molecularly imprinted polymers as affinity-based chromatography media. Journal of Chromatography B 2008, 866 (1–2), 3-13.
74. Say, R.; Erdem, M.; Ersöz, A.; Türk, H.; Denizli, A., Biomimetic catalysis of an organophosphate by molecularly surface imprinted polymers. Applied Catalysis A: General 2005, 286 (2), 221-225.
75. Piacham, T.; Josell, Å.; Arwin, H.; Prachayasittikul, V.; Ye, L., Molecularly imprinted polymer thin films on quartz crystal microbalance using a surface bound photo-radical initiator. Analytica Chimica Acta 2005, 536 (1–2), 191-196.
76. Wei, S.; Mizaikoff, B., Recent advances on noncovalent molecular imprints for affinity separations. Journal of Separation Science 2007, 30 (11), 1794-1805.
77. 百科, B. d. 乳液聚合. http://baike.baidu.com/view/641365.htm.
78. Pérez-Moral, N.; Mayes, A. G., Comparative study of imprinted polymer particles prepared by different polymerisation methods. Analytica Chimica Acta 2004, 504 (1), 15-21.
79. Cheong, W. J.; Yang, S. H.; Ali, F., Molecular imprinted polymers for separation science: A review of reviews. Journal of Separation Science 2013, 36 (3), 609-628.
80. Yan, H.; Row, K., Characteristic and Synthetic Approach of Molecularly Imprinted Polymer. International Journal of Molecular Sciences 2006, 7 (5), 155-178.
81. (a) Mayes, L. C.; Feldman, R.; Granger, R. H.; Haynes, O. M.; Bornstein, M. H.; Schottenfeld, R., The effects of polydrug use with and without cocaine on mother-infant interaction at 3 and 6 months. Infant Behavior and Development 1997, 20 (4), 489-502; (b) Lee, L. L., Synthesis and application of molecularly imprinted solid-phase extraction for the deternination of terbutaline in biological materials unviersiti sains Malaysia.
82. Lange, U.; Roznyatovskaya, N. V.; Mirsky, V. M., Conducting polymers in chemical sensors and arrays. Analytica Chimica Acta 2008, 614 (1), 1-26.
83. Pernites, R.; Ponnapati, R.; Felipe, M. J.; Advincula, R., Electropolymerization molecularly imprinted polymer (E-MIP) SPR sensing of drug molecules: Pre-polymerization complexed terthiophene and carbazole electroactive monomers. Biosensors and Bioelectronics 2011, 26 (5), 2766-2771.
84. Marx, S.; Liron, Z., Molecular Imprinting in Thin Films of Organic−Inorganic Hybrid Sol−Gel and Acrylic Polymers. Chemistry of Materials 2001, 13 (10), 3624-3630.
85. Fireman-Shoresh, S.; Avnir, D.; Marx, S., General Method for Chiral Imprinting of Sol−Gel Thin Films Exhibiting Enantioselectivity. Chemistry of Materials 2003, 15 (19), 3607-3613.
86. Bernard, A.; Renault, J. P.; Michel, B.; Bosshard, H. R.; Delamarche, E., Microcontact Printing of Proteins. Advanced Materials 2000, 12 (14), 1067-1070.
87. Incorporated, T. http://www.wmo-gaw-wcc-aerosol-physics.org/files/Atomizer-TSI-3076.pdf.
88. Chapman, S., Carrier Mobility Spectra of Spray Electrified Liquids. Physical Review 1937, 52 (3), 184-190.
89. (a) Liu, P.; Liu, R.; Guan, G.; Jiang, C.; Wang, S.; Zhang, Z., Surface-enhanced Raman scattering sensor for theophylline determination by molecular imprinting on silver nanoparticles. Analyst 2011, 136 (20), 4152-4158; (b) Wang, H. Y.; Kobayashi, T.; Fujii, N., Molecular Imprint Membranes Prepared by the Phase Inversion Precipitation Technique. Langmuir 1996, 12 (20), 4850-4856.
90. (a) Kan, X.; Liu, T.; Zhou, H.; Li, C.; Fang, B., Molecular imprinting polymer electrosensor based on gold nanoparticles for theophylline recognition and determination. Microchim Acta 2010, 171 (3-4), 423-429; (b) Andersson, L. I.; Muller, R.; Vlatakis, G.; Mosbach, K., MIMICS OF THE BINDING-SITES OF OPIOID RECEPTORS OBTAINED BY MOLECULAR IMPRINTING OF ENKEPHALIN AND MORPHINE. Proceedings of the National Academy of Sciences of the United States of America 1995, 92 (11), 4788-4792.
91. (a) Krupadam Reddithota, J.; Venkatesh, A.; Piletsky Sergy, A., Molecularly Imprinted Polymer Receptors for Nicotine Recognition in Biological systems. In Molecular Imprinting, 2013; Vol. 1, p 27; (b) Wu, Z.; Zhang, X.; Yang, Y.; Shen, G.; Yu, R., A sensitive nicotine sensor based on molecularly imprinted electropolymer of o-aminophenol. Front. Chem. China 2006, 1 (2), 183-187.
92. (a) Piletsky, S. A.; Piletskaya, E. V.; Elgersma, A. V.; Yano, K.; Karube, I.; Parhometz, Y. P.; El'skaya, A. V., Atrazine sensing by molecularly imprinted membranes. Biosensors and Bioelectronics 1995, 10 (9), 959-964; (b) Matsui, J.; Doblhoff-Dier, O.; Takeuchi, T., 2-(Trifluoromethyl)acrylic acid: a novel functional monomer in non-covalent molecular imprinting. Analytica Chimica Acta 1997, 343 (1–2), 1-4.
93. (a) Sreenivasan, K., Imparting Cholesterol Recognition Sites in Radiation Polymerised Poly(2-hydroxyethyl methacrylate) by Molecular Imprinting. Polymer International 1997, 42 (2), 169-172; (b) Sreenivasan, K., Effect of the type of monomers of molecularly imprinted polymers on the interaction with steroids. Journal of Applied Polymer Science 1998, 68 (11), 1863-1866.
94. (a) Sellergren, B.; Lepistoe, M.; Mosbach, K., Highly enantioselective and substrate-selective polymers obtained by molecular imprinting utilizing noncovalent interactions. NMR and chromatographic studies on the nature of recognition. Journal of the American Chemical Society 1988, 110 (17), 5853-5860; (b) Andersson, L.; Sellergren, B.; Mosbach, K., Imprinting of amino acid derivatives in macroporous polymers. Tetrahedron Letters 1984, 25 (45), 5211-5214.
95. (a) Piletska, E. V.; Guerreiro, A. R.; Whitcombe, M. J.; Piletsky, S. A., Influence of the Polymerization Conditions on the Performance of Molecularly Imprinted Polymers. Macromolecules 2009, 42 (14), 4921-4928; (b) Deng, D.-L.; Zhang, J.-Y.; Chen, C.; Hou, X.-L.; Su, Y.-Y.; Wu, L., Monolithic molecular imprinted polymer fiber for recognition and solid phase microextraction of ephedrine and pseudoephedrine in biological samples prior to capillary electrophoresis analysis. Journal of Chromatography A 2012, 1219 (0), 195-200.
96. Lin, C.-Y.; Tai, D.-F.; Wu, T.-Z., Discrimination of Peptides by Using a Molecularly Imprinted Piezoelectric Biosensor. Chemistry – A European Journal 2003, 9 (20), 5107-5110.
97. Huang, J.-T.; Zhang, J.; Zhang, J.-Q.; Zheng, S.-H., Template imprinting amphoteric polymer for the recognition of proteins. Journal of Applied Polymer Science 2005, 95 (2), 358-361.
98. Hayden, O.; Bindeus, R.; Haderspöck, C.; Mann, K.-J.; Wirl, B.; Dickert, F. L., Mass-sensitive detection of cells, viruses and enzymes with artificial receptors. Sensors and Actuators B: Chemical 2003, 91 (1–3), 316-319.
99. Dickert, F. L.; Hayden, O., Bioimprinting of Polymers and Sol−Gel Phases. Selective Detection of Yeasts with Imprinted Polymers. Analytical Chemistry 2002, 74 (6), 1302-1306.
100. Haupt, K., Peer Reviewed: Molecularly Imprinted Polymers: The Next Generation. Analytical Chemistry 2003, 75 (17), 376 A-383 A.
101. Sellergren, B., Polymer- and template-related factors influencing the efficiency in molecularly imprinted solid-phase extractions. TrAC Trends in Analytical Chemistry 1999, 18 (3), 164-174.
102. Janiak, C., A critical account on [small pi]-[small pi] stacking in metal complexes with aromatic nitrogen-containing ligands. Journal of the Chemical Society, Dalton Transactions 2000, (21), 3885-3896.
103. 林欣怡, 用微接觸技術製備肌紅蛋白質的人工抗體模版. 國立成功大學化學工程學系碩士論文 2006.
104. Janata, J., principles of chemical sensors. Janata, Jiri: Springer.
105. Padmavathi, D. A. Potential Energy Curves & Material Properties. file:///C:/Users/ASUS/Downloads/MSA20110200002_38717985.pdf.
106. Karim, K.; Breton, F.; Rouillon, R.; Piletska, E. V.; Guerreiro, A.; Chianella, I.; Piletsky, S. A., How to find effective functional monomers for effective molecularly imprinted polymers? Advanced Drug Delivery Reviews 2005, 57 (12), 1795-1808.
107. Andersson, H. S.; Nicholls, I. A., Spectroscopic Evaluation of Molecular Imprinting Polymerization Systems. Bioorganic Chemistry 1997, 25 (3), 203-211.
108. Sasaki, D. Y.; Alam, T. M., Solid-state P-31 NMR study of phosphonate binding sites in guanidine-functionalized, molecular imprinted silica xerogels. Chemistry of Materials 2000, 12 (5), 1400-1407.
109. 陳立中, 從豆類粉萃取金雀異黃酮素. 大同大學化學工程研究所碩士論文2013.
110. Dong, W.; Yan, M.; Liu, Z.; Wu, G.; Li, Y., Effects of solvents on the adsorption selectivity of molecularly imprinted polymers: Molecular simulation and experimental validation. Separation and Purification Technology 2007, 53 (2), 183-188.
111. Oral, E.; Peppas, N. A., Dynamic studies of molecular imprinting polymerizations. Polymer 2004, 45 (18), 6163-6173.
112. Marty, J.; Mauzac, M., Molecular Imprinting: State of the Art and Perspectives. In Microlithography • Molecular Imprinting, Springer Berlin Heidelberg: 2005; Vol. 172, pp 1-35.
113. Cormack, P. A. G.; Elorza, A. Z., Molecularly imprinted polymers: synthesis and characterisation. Journal of Chromatography B 2004, 804 (1), 173-182.
114. C. Sherrington, D., Preparation, structure and morphology of polymer supports. Chemical Communications 1998, (21), 2275-2286.
115. 維基百科編者 溶劑. http://zh.wikipedia.org/wiki/%E6%BA%B6%E5%89%82.
116. Fischer, L.; Mueller, R.; Ekberg, B.; Mosbach, K., Direct enantioseparation of .beta.-adrenergic blockers using a chiral stationary phase prepared by molecular imprinting. Journal of the American Chemical Society 1991, 113 (24), 9358-9360.
117. Hosoya, K.; Yoshizako, K.; Shirasu, Y.; Kimata, K.; Araki, T.; Tanaka, N.; Haginaka, J., Molecularly imprinted uniform-size polymer-based stationary phase for high-performance liquid chromatography structural contribution of cross-linked polymer network on specific molecular recognition. Journal of Chromatography A 1996, 728 (1–2), 139-147.
118. Kriz, D.; Kriz, C. B.; Andersson, L. I.; Mosbach, K. H., Thin-Layer Chromatography Based on the Molecular Imprinting Technique. Analytical Chemistry 1994, 66 (17), 2636-2639.
119. Puoci, F.; Cirillo, G.; Curcio, M.; Iemma, F.; Spizzirri, U. G.; Picci, N., Molecularly imprinted solid phase extraction for the selective HPLC determination of α-tocopherol in bay leaves. Analytica Chimica Acta 2007, 593 (2), 164-170.
120. Sellergren, B., Direct Drug Determination by Selective Sample Enrichment on an Imprinted Polymer. Analytical Chemistry 1994, 66 (9), 1578-1582.
121. Syu, M.-J.; Chiu, T.-C.; Lai, C.-Y.; Chang, Y.-S., Amperometric detection of bilirubin from a micro-sensing electrode with a synthetic bilirubin imprinted poly(MAA-co-EGDMA) film. Biosensors and Bioelectronics 2006, 22 (4), 550-557.
122. Liang, H.-J.; Ling, T.-R.; Rick, J. F.; Chou, T.-C., Molecularly imprinted electrochemical sensor able to enantroselectivly recognize d and l-tyrosine. Analytica Chimica Acta 2005, 542 (1), 83-89.
123. Panasyuk-Delaney, T.; Mirsky, V. M.; Wolfbeis, O. S., Capacitive Creatinine Sensor Based on a Photografted Molecularly Imprinted Polymer. Electroanalysis 2002, 14 (3), 221-224.
124. Mirmohseni, A.; Shojaei, M.; Farbodi, M., Application of a quartz crystal nanobalance to the molecularly imprinted recognition of phenylalanine in solution. Biotechnol Bioproc E 2008, 13 (5), 592-597.
125. Lin, T.-Y.; Hu, C.-H.; Chou, T.-C., Determination of albumin concentration by MIP-QCM sensor. Biosensors and Bioelectronics 2004, 20 (1), 75-81.
126. Cudjoe, K. S.; Thorsen, L. I.; Sørensen, T.; Reseland, J.; Olsvik, Ø.; Granum, P. E., Detection of Clostridium perfringens type A enterotoxin in faecal and food samples using immunomagnetic separation (IMS)-ELISA. International Journal of Food Microbiology 1991, 12 (4), 313-321.
127. Ugelstad, J.; Berge, A.; Ellingsen, T.; Schmid, R.; Nilsen, T. N.; Mørk, P. C.; Stenstad, P.; Hornes, E.; Olsvik, Ø., Preparation and application of new monosized polymer particles. Progress in Polymer Science 1992, 17 (1), 87-161.
128. Huval, C. C.; Bailey, M. J.; Braunlin, W. H.; Holmes-Farley, S. R.; Mandeville, W. H.; Petersen, J. S.; Polomoscanik, S. C.; Sacchiro, R. J.; Chen, X.; Dhal, P. K., Novel cholesterol lowering polymeric drugs obtained by molecular imprinting. Macromolecules 2001, 34 (6), 1548-1550.
129. (a) Haupt, K.; Mosbach, K., Plastic antibodies: developments and applications. Trends in Biotechnology 1998, 16 (11), 468-475; (b) Ansell, R. J.; Ramström, O.; Mosbach, K., Towards artificial antibodies prepared by molecular imprinting. Clinical Chemistry 1996, 42 (9), 1506-12.
130. Müller, R.; Andersson, L. I.; Mosbach, K., Molecularly imprinted polymers facilitating a β-elimination reaction. Die Makromolekulare Chemie, Rapid Communications 1993, 14 (10), 637-641.
131. Wulff, G.; Gross, T.; Schönfeld, R., Enzyme Models Based on Molecularly Imprinted Polymers with Strong Esterase Activity. Angewandte Chemie International Edition in English 1997, 36 (18), 1962-1964.
132. Markowitz, M. A.; Kust, P. R.; Klaehn, J.; Deng, G.; Gaber, B. P., Surface-imprinted silica particles: the effects of added organosilanes on catalytic activity. Analytica Chimica Acta 2001, 435 (1), 177-185.
133. Dong, W.; Yan, M.; Zhang, M.; Liu, Z.; Li, Y., A computational and experimental investigation of the interaction between the template molecule and the functional monomer used in the molecularly imprinted polymer. Analytica Chimica Acta 2005, 542 (2), 186-192.
134. 林敬二, 儀器分析. 美亞書版股份有限公司.
135. Cheong, S. H.; McNiven, S.; Rachkov, A.; Levi, R.; Yano, K.; Karube, I., Testosterone Receptor Binding Mimic Constructed Using Molecular Imprinting. Macromolecules 1997, 30 (5), 1317-1322.
136. 近藤精一, 石., 安部郁夫, 吸附科學, 化學工業出版社.
137. Izabella Jasińska, P., Particle size and pore structure of nanomaterials. West Pomeranian University of Technology, Szczecin.
138. 黃富昌, 顏冠忠, 林嘉鴻, 以吸脫附動力曲線探討土壤吸附特性. 南亞技術學院土木與環境工程系.
139. 莊子函, 結合層層自組裝與模版法合成可控制奈米結構無機氧化物材料. 國立成功大學化學工程學系碩士論文 2010.
140. Brunauer, S.; Emmett, P. H.; Teller, E., Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society 1938, 60 (2), 309-319.
141. Groen, J. C.; Peffer, L. A. A.; Pérez-Ramı́rez, J., Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous and Mesoporous Materials 2003, 60 (1–3), 1-17.
142. Barrett, E. P.; Joyner, L. G.; Halenda, P. P., The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society 1951, 73 (1), 373-380.
143. Aligizaki, K. K., Pore structure of cement-based materials Talyor & Francis: sponpress.
144. Spivak, D. A., Optimization, evaluation, and characterization of molecularly imprinted polymers. Advanced Drug Delivery Reviews 2005, 57 (12), 1779-1794.
145. O'Connor, D. J.; Connolly, J. P., The effect of concentration of adsorbing solids on the partition coefficient. Water Research 1980, 14 (10), 1517-1523.
146. Özcan, A.; Özcan, A. S.; Tunali, S.; Akar, T.; Kiran, I., Determination of the equilibrium, kinetic and thermodynamic parameters of adsorption of copper(II) ions onto seeds of Capsicum annuum. Journal of Hazardous Materials 2005, 124 (1–3), 200-208.
147. He, J.; Hong, S.; Zhang, L. A.; Gan, F. X.; Ho, Y. S., Equilibrium and thermodynamic parameters of adsorption of methylene blue onto rectorite. Fresenius Environmental Bulletin 2010, 19 (11A), 2651-2656.
148. (a) Weber, T. W.; Chakravorti, R. K., Pore and solid diffusion models for fixed-bed adsorbers. AIChE Journal 1974, 20 (2), 228-238; (b) Hall, K. R.; Eagleton, L. C.; Acrivos, A.; Vermeulen, T., Pore- and Solid-Diffusion Kinetics in Fixed-Bed Adsorption under Constant-Pattern Conditions. Industrial & Engineering Chemistry Fundamentals 1966, 5 (2), 212-223.
149. Szabelski, P.; Kaczmarski, K.; Cavazzini, A.; Chen, Y. B.; Sellergren, B.; Guiochon, G., Energetic heterogeneity of the surface of a molecularly imprinted polymer studied by high-performance liquid chromatography. Journal of Chromatography A 2002, 964 (1–2), 99-111.
150. Umpleby Ii, R. J.; Baxter, S. C.; Bode, M.; Berch Jr, J. K.; Shah, R. N.; Shimizu, K. D., Application of the Freundlich adsorption isotherm in the characterization of molecularly imprinted polymers. Analytica Chimica Acta 2001, 435 (1), 35-42.
151. Kim, H.; Spivak, D. A., New Insight into Modeling Non-Covalently Imprinted Polymers. Journal of the American Chemical Society 2003, 125 (37), 11269-11275.
152. 高文弘, 基礎液相色層分析. 國星出版社: 國星出版社.
153. Muhammad, T.; Nur, Z.; Piletska, E. V.; Yimit, O.; Piletsky, S. A., Rational design of molecularly imprinted polymer: the choice of cross-linker. Analyst 2012, 137 (11), 2623-2628.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-09-10起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-09-10起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw