進階搜尋


下載電子全文  
系統識別號 U0026-2108201417375600
論文名稱(中文) 使用不同傾斜角度的觸控式平板電腦對使用者姿勢控制與肌肉活動程度之影響
論文名稱(英文) The effects of different tablet tilt angles on posture control and muscle activity in tablet computer users
校院名稱 成功大學
系所名稱(中) 物理治療學系
系所名稱(英) Department of Physical Therapy
學年度 102
學期 2
出版年 103
研究生(中文) 張文琳
研究生(英文) Wen-Lin Chang
學號 T66014048
學位類別 碩士
語文別 英文
論文頁數 125頁
口試委員 指導教授-卓瓊鈺
口試委員-黃英修
口試委員-楊政峯
口試委員-黃雅淑
中文關鍵字 平板電腦  傾斜  姿勢  肌肉活動  自覺費力/舒適 
英文關鍵字 Tablet  Tilt  Posture  Muscle activity  Perceived exertion/ comfort 
學科別分類
中文摘要 研究背景與目的:由於平板電腦獨特的性能,使用者可以躺著,坐著,站著或於行走時使用平板電腦。平板電腦使用者可以在不同的姿勢下來操作平板電腦。平板電腦也可以在不同的傾斜角度下使用。根據過去研究,當平板電腦的傾斜角度減少時,頸部姿勢愈漸彎曲,頸部肌肉的肌肉活動程度增高。而當傾斜角度增加時,手腕姿勢愈漸伸直,伸腕肌的肌肉活動程度增高。過去研究也發現使用電腦有較高的電腦視覺症候群(Computer vision syndrome)的發生。此外,較高的自覺費力度和自覺舒適度也和肌肉骨骼疾病(Musculoskeletal disorder)的形成有關。就性別而言,以前研究也認位女性相比於男性有較高罹患肌肉骨骼疾病的風險。然而,平板電腦的使用和上述參數,例如姿勢、肌肉活性、視覺、自覺費力及自覺舒適度之間的關係仍未得到詳盡的研究。因此,本篇研究的目的有三,第一,探討平板電腦傾斜角度對平板電腦使用者姿勢及肌肉活動的影響;第二,探討時間效應對平板電腦使用者的影響;第三,比較不同性別使用者在使用平板電腦時的差異。
研究方法:本實驗收取15名男性和15名女性,皆具備使用過觸控式電子儀器的經驗。所有的參與者皆會在不同的傾斜角度情況下(0˚,15˚,50˚,及自選角度)進行平板電腦作業。在研究過程中,透過三度空間紅外線攝影機(Qualisys)記錄頭部,頸部,軀幹和上肢姿勢。另外會以肌電圖記錄雙側頸豎脊肌(Cervical erector spinae)、雙側上斜方肌(Upper trapezius)、雙側前三角肌(Anterior deltoid)、右手腕伸指肌(Extensor digitorum)和右手腕屈指淺肌(Flexor digitorum superficialis)的肌肉活動。六個身體部位的自覺費力度和舒適度,以及視覺不適和眨眼頻率。本研究統計方式使用三因子重複測量變異數(傾斜角度,性別和時間)分析姿勢和肌肉活動。二因子重複測量變異數(傾斜角度和性別)分析自覺費力、自覺舒適度和視覺不適。曼-惠特尼 U檢定比較傾斜角度偏好順序和眨眼頻率。魏可遜排序檢定用於比較性別間的傾斜角度偏好順序和眨眼頻率。另外,為了控制身高對於姿勢及肌肉活性的干擾效果,使用重複測量共變數分析姿勢的差異。
結果:隨著平板電腦傾斜角度增加,頭部和頸部呈現較直立的姿勢(p<0.001)。軀幹側彎角度增加(p=0.028),胸椎,軀幹和腰椎的姿勢則沒有顯著改變。當平板電腦傾斜角度增大時,肩關節彎曲角度增大(p<0.001),手肘伸直角度增大(p<0.001)和手腕伸直角度增大(p<0.001),而在手腕的橈尺側偏移角度則無顯著差異。對於雙側頸豎脊肌,隨著平板電腦傾斜角度增加,有肌肉活動下降的現象,但並未達到顯著水準(p=0.080)。對於前三角肌(p<0.001)和手腕伸指肌(p=0.028),肌肉活動則顯著增加。隨著平板電腦傾斜角度增加,在頸部(兩側,p<0.05)和上背部(兩側,p<0.05)的自覺費力及自覺不適程度顯著下降,但在手腕處(右側,p<0.05則顯著增加。此外,隨著時間的進展,左側上斜方肌(p=0.004)和左側前三角肌(p=0.025)的肌肉活動顯著下降。對於性別差異,男性有較多的頭頸部和軀幹前屈的姿勢,尤其是胸椎屈曲有達到顯著差異(p=0.006)。女性有較大的肩關節彎曲角度,肘關節伸直角度和手腕關節伸直角度,但是沒有達到顯著差異(p>0.05)。女性相較於男性有較高的肌肉活動,除了雙側頸豎脊肌。女性有較高的自覺分數,尤其是在頸部(兩側,p<0.05)。
結論:從運動學,動力學,和自覺分數的分析,結果顯示平板電腦擺在中間角度時,頸部,軀幹和上肢姿勢較沒有出現極端姿勢的現象,在頸部和上肢肌肉活動程度也較低。因此推測當平板電腦放置在中間角度如15˚時,罹患骨骼肌肉疾病的風險較低。另外,女性因為在使用平板電腦時有較高的肌肉活動和自覺主觀分數,推測女性使用者可能有較高的風險罹患骨骼肌肉疾病。最後,對於時間的效應,研究者在此部分並無太多顯著發現。然而,研究者推測如果能夠持續較長的實驗時間,時間對身體的運動學和動力學參數可能較會有顯著性影響。
英文摘要 Background and purpose: The tablet computers offer a mobile computing experience and users operate it while lying, sitting, standing, or walking. Thus, the tablet computer users may perform different postures to operate the tablet computer. According to previous studies, neck flexion increased significantly and muscle activity of neck increased as the tablet tilt angle decreased. Wrist extension increased and muscle activity of wrist extensor increased as the tablet tilt angle increased. Previous studies demonstrated that computer works were associated with a high prevalence of computer vision syndrome. The higher perceived exertion and perceived comfort were also associated with developing musculoskeletal symptoms (MSDs) in the computer users. Besides, females were found to be at higher risk of MSDs than males on computer work. However, the relationship between the tablet computer and aforementioned parameters are still under investigation. Three purposes of the current study were: first, to investigate the effects of tablet tilt angle on body kinematic and kinetics in tablet computer users during performing tablet task; second, to explore the time effects on tablet computer users; third, to compare the gender differences in tablet computer users.

Method: Fifteen male and fifteen female adults who experienced with touch display inputs were recruited. All participants executed the tablet computer task at four tablet tilt angles (0˚, 15˚, 50 ˚, and self-chosen tilt angle). While performing the tablet computer task, posture of head, neck, trunk and upper extremity were recorded by motion captured cameras (Qualisys). Muscle activity of bilateral cervical erector spinae (CES), bilateral upper trapezius (Trap), bilateral anterior deltoid (AD), right extensor digitorum (RED), and right flexor digitorum superficialis (RFDS) were recorded. Perceived exertion and comfort in six body regions as well as visual discomfort and blink rate were rated. Also, the preference of tilt angle in tablet computer users was recorded. A three-way repeated measures analysis of variance (RMANOVA) on tilt angle, gender and time was used to evaluate posture and muscle activity. A two-way RMANOVA on tilt angle and gender was used to evaluate perceived exertion, comfort and visual discomfort. Whitney U test was used to compare the preference of tilt angle and blink rate. Wilcoxon rank sum test was used to compare the preference of tilt angle and blink rate between gender groups. In order to control for the confounding effects of body height, a repeated measures analysis of covariance (RMANCOVA) was also used between genders.

Results: The head and neck postures became more erect as the tablet tilt angle increased (p<0.001). The trunk side bending angle increased as tilt angle increased (p=0.028). The posture of thoracic, trunk and lumbar did not significantly change as the tablet tilt angle increased; however there was a trend toward extension on these postural parameters. For upper extremity, when the tilt angle increased, the shoulder posture became more flexed (p<0.001). The elbow posture became extended (p<0.001) and the wrist posture became more extended (p<0.001). There was no significant difference on the wrist deviation posture at different tilt angles. For bilateral CES, the muscle activities decreased as tilt angle increased, but it did not reach the significant level (p=0.080). For RAD (p<0.001) and RED (p=0.028), the muscle activities significantly increased as the tablet tilt angle increased. Both exertion and comfort scores on the neck (both side, p<0.05) and upper back (both side, p<0.05) significantly decreased. Both scores on the wrist (right side, p<0.05) significantly increased as the tilt angle increased. For the time effect, the gaze angle significantly decreased (p=0.025), and the cervical-thoracic angle significantly increased (p=0.007). In addition, the muscle activities of Ltrap (p=0.004) and LAD (p=0.025) significantly decreased as time progressed. For gender differences, males had greater head, neck and trunk flexion postures than females, especially for thoracic flexion (p=0.006). Although, females had slightly greater shoulder flexion, elbow extension and wrist extension. However, there were no significant differences (p>0.05). The female group tended to have a higher muscle activity than the male group, except for bilateral CES. For the perceived scores, females had a higher scores than males, especially for neck region (both side, p<0.05).

Conclusion: From analysis of body kinematic, kinetic, and perceived score, the results showed that there was a lower risk level of MSDs at intermediate angle, such as 15˚ tablet tilt angle, than at extreme angle, such as 0 ˚ and 50 ˚ tablet tilt angle, due to no extreme postures demonstrated on neck, trunk and upper extremity as well as lower muscle activities on neck and upper extremity. Moreover, the results also showed that females might have a higher risk of MSDs than males during the tablet computer task due to higher muscle activities and higher perceived scores. For the time effect, not many significant time effects were found in this study. However, if the experimental time can last longer, we speculated that more significant time effects might be found on body kinematic and kinetic parameters.
論文目次 Abstract I
摘要 III
致謝 V
Table of Contents VI
List of Tables VI
List of Figures VI
Chapter 1. Introduction 1
1.1、The prevalence of tablet computer use 1
1.2、The touchscreen interfaces and tilting angles 2
1.3、Liquid crystal displays and computer vision syndromes 4
1.4、Tablet computer users’ posture and muscle activity 7
1.5、Gender differences on computer users 12
1.6、Study limitation of previous studies 14
1.7、Motivation and purpose 15
Chapter 2. Methods 17
2.1、Study population 17
2.2、Experimental procedure 18
2.3、The workstation 18
2.4、Touchscreen tilt angle and Touchscreen task 20
2.5、Outcome measures 20
2.5.1 Posture 20
2.5.2 Electromyography (EMG) 23
2.5.3 Perceived exertion and perceived comfort 24
2.5.4 Perceived visual discomfort and blink rate 25
2.6、Data analysis 26
Chapter 3. Results 28
3.1、Participants’ characteristics 28
3.2、Mean posture 28
3.2.1 Gaze distance 28
3.2.2 Gaze angle 29
3.2.3 Cranial-cervical angle 29
3.2.4 Cervical-thoracic angle 29
3.2.5 Head angle 30
3.2.6 Neck angle 30
3.2.7 Thoracic angle 30
3.2.8 Trunk angle 31
3.2.9 Trunk side bending angle 31
3.2.10 Lumbar angle 31
3.2.11 Scapular elevation angle 32
3.2.12 Shoulder angle 32
3.2.13 Elbow angle 32
3.2.14 Wrist angle 33
3.2.15 Wrist deviation angle 33
3.3、Movement range 33
3.3.1 Gaze distance 33
3.3.2 Gaze angle 34
3.3.3 Cranial-cervical angle 34
3.3.4 Cervical-thoracic angle 34
3.3.5 Head angle 35
3.3.6 Neck angle 35
3.3.7 Thoracic angle 35
3.3.8 Trunk angle 36
3.3.9 Trunk side bending angle 36
3.3.10 Lumbar angle 36
3.3.11 Scapular elevation angle 36
3.3.12 Shoulder angle 37
3.3.13 Elbow angle 37
3.3.14 Wrist angle 37
3.3.15 Wrist deviation angle 37
3.4、Electromyographic data 38
3.5、Perceived exertion and perceived comfort 39
3.6、Perceived visual discomfort and blink rate 40
3.7、The order of preference of tilt angle 41
Chapter 4. Discussion 42
4.1、Effects of the tilt angle 43
4.1.1 Postural analysis 43
4.1.2 EMG analysis 50
4.1.3 Analysis of perceived score 54
4.1.4 Analysis of visual parameters 56
4.2、Effects of the time 58
4.2.1 Postural analysis 58
4.2.2 EMG analysis 60
4.2.3 Analysis of visual parameters 61
4.3、Effect of the gender 63
4.3.1 Postural analysis 63
4.3.2 EMG analysis 65
4.3.3 Analysis of perceived score 67
4.3.4 Analysis of visual parameters 69
4.4、Explanation for the interactions 70
4.4.1 Analysis of the time × gender interaction 70
4.4.2 Analysis of the tilt angle × gender interaction 73
4.5、Limitations and further study 74
Chapter 5. Conclusion 76
References 77
Appendix 95
Appendix 1 Perceived exertion scale 95
Appendix 2 Perceived comfort scale 96
Appendix 3 Perceived visual discomfort scale 97

參考文獻 1. Albin, T. J., & McLoone, H. E. (2014). The effect of tablet tilt angle on users' preferences, postures, and performance. Work: A Journal of Prevention, Assessment and Rehabilitation, 47(2), 207-211.
2. Andersson, A. L. (2007). Working technique during computer work. Arbete och Hälsa, 41, 1.
3. ANSI/HFES 100-2007. 2007. Human Factors Engineering of Computer Workstations. Santa Monica, CA: Human Factors and Ergonomics Society.
4. Ariëns, G. A. M., Bongers, P. M., Douwes, M., Miedema, M. C., Hoogendoorn, W. E., van der Wal, G., et al. (2001). Are neck flexion, neck rotation, and sitting at work risk factors for neck pain? Results of a prospective cohort study. Occupational and Environmental Medicine, 58(3), 200-207.
5. Asundi, K., Odell, D., Luce, A., & Dennerlein, J. T. (2012). Changes in posture through the use of simple inclines with notebook computers placed on a standard desk. Applied Ergonomics, 43(2), 400-407.
6. Ayanniyi, O., Ukpai, B. O. O., & Adeniyi, A. F. (2010). Differences in prevalence of self-reported musculoskeletal symptoms among computer and non-computer users in a Nigerian population: a cross-sectional study. BMC Musculoskeletal Disorders, 11(1), 177.
7. Baker, N. A., Sussman, N. B., & Redfern, M. S. (2008). Discriminating between individuals with and without musculoskeletal disorders of the upper extremity by means of items related to computer keyboard use. Journal of Occupational Rehabilitation, 18(2), 157-165.
8. Bhanderi, D. J., Choudhary, S., & Doshi, V. G. (2008). A community-based study of asthenopia in computer operators. Indian Journal of Ophthalmology, 56(1), 51-55.
9. Blehm, C., Vishnu, S., Khattak, A., Mitra, S., & Yee, R. W. (2005). Computer vision syndrome: A review. Survey of Ophthalmology, 50(3), 253-262.
10. Borg, G. (1990). Psychophysical scaling with applications in physical work and the perception of exertion. Scandinavian Journal of Work Environment & Health, 16, 55-58.
11. Boström, M., Dellve, L., Thomée, S., & Hagberg, M. (2008). Risk factors for generally reduced productivity-a prospective cohort study of young adults with neck or upper-extremity musculoskeletal symptoms. Scandinavian Journal of Work, Environment & Health, 120-132.
12. Burgess-Limerick, R., Mon-Williams, M., & Coppard, V. L. (2000). Visual display height. Human Factors: The Journal of the Human Factors and Ergonomics Society, 42(1), 140-150.
13. Burgess-Limerick, R, Plooy, A, Fraser, K, & Ankrum, DR. (1999). The influence of computer monitor height on head and neck posture. International Journal of Industrial Ergonomics, 23(3), 171-179.
14. Chen, C.Y., & Zhong, T.D. (1999). An Ergonomic Development for VDT Workstation. Institute of Occupational Safety and Health, Council of Labor Affairs. Republic of China.
15. Chiou, W. K., Chou, W. Y., & Chen, B. H. (2012). Notebook computer use with different monitor tilt angle: effects on posture, muscle activity and discomfort of neck pain users. Work:a Journal of Prevention Assessment and Rehabilitation, 41, 2591-2595.
16. Cho, C. Y., Hwang, I. S., & Chen, C. C. (2003). The association between psychological distress and musculoskeletal symptoms experienced by Chinese high school students. Journal of Orthopaedic & Sports Physical Therapy, 33(6), 344-353.
17. Cho, C. Y., Hwang, Y. S., & Cherng, R. J. (2012). Musculoskeletal symptoms and associated risk factors among office workers with high workload computer use. Journal of Manipulative and Physiological Therapeutics, 35(7), 534-540.
18. Chu, C., Rosenfield, M., Portello, J. K., Benzoni, J. A., & Collier, J. D. (2011). A comparison of symptoms after viewing text on a computer screen and hardcopy. Ophthalmic and Physiological Optics, 31(1), 29-32.
19. Cook, C., Burgess-Limerick, R., & Chang, S. W. (2000). The prevalence of neck and upper extremity musculoskeletal symptoms in computer mouse users. International Journal of Industrial Ergonomics, 26(3), 347-356.
20. Cortimiglia, M. N., Frank, A. G., & Seben, L. (2013). Tablets: The Next Disruptive Computing Technology? IT Professional, 15(3), 18-25.
21. Cram, J. R., Kasman, G. S., & Holtz, J. Introduction to surface electromyography. 1998. Gaithersburg, Marland: Aspen publishers Inc.
22. Cuthbert, S. C., & Goodheart, G. J. (2007). On the reliability and validity of manual muscle testing: a literature review. Chiropractic & Manual Therapies, 15(1), 4.
23. Dennerlein, J. T., & Johnson, P. W. (2006a). Changes in upper extremity biomechanics across different mouse positions in a computer workstation. Ergonomics, 49(14), 1456-1469.
24. Dennerlein, J. T., & Johnson, P. W. (2006b). Different computer tasks affect the exposure of the upper extremity to biomechanical risk factors. Ergonomics, 49(1), 45-61.
25. Doughty, M. J. (2002). Further assessment of gender-and blink pattern-related differences in the spontaneous eye blink activity in primary gaze in young adult humans. Optometry & Vision Science, 79(7), 439-447.
26. Dunk, N. M., & Callaghan, J. P. (2005). Gender-based differences in postural responses to seated exposures. Clinical Biomechanics, 20(10), 1101-1110.
27. Dvir, Z, & Berme, N. (1978). The shoulder complex in elevation of the arm: a mechanism approach. Journal of Biomechanics, 11(5), 219-225.
28. Feng, Y., Grooten, W., Wretenberg, P., & Arborelius, U. P. (1997). Effects of arm support on shoulder and arm muscle activity during sedentary work. Ergonomics, 40(8), 834-848.
29. Feuerstein, M., Armstrong, T., Hickey, P., & Lincoln, A. (1997). Computer keyboard force and upper extremity symptoms. Journal of Occupational and Environmental Medicine, 39(12), 1144-1153.
30. Fillingim, R. B., King, C. D., Ribeiro-Dasilva, M. C., Rahim-Williams, B., & Riley III, J. L. (2009). Sex, gender, and pain: a review of recent clinical and experimental findings. The Journal of Pain, 10(5), 447-485.
31. Fostervold, K. I., Aarås, A., & Lie, I. (2006). Work with visual display units: long-term health effects of high and downward line-of-sight in ordinary office environments. International Journal of Industrial Ergonomics, 36(4), 331-343.
32. Freudenthaler, N., Neuf, H., Kadner, G., & Schlote, T. (2003). Characteristics of spontaneous eyeblink activity during video display terminal use in healthy volunteers. Graefes Archive for Clinical and Experimental Ophthalmology, 241(11), 914-920.
33. Gayton, J. L. (2009). Etiology, prevalence, and treatment of dry eye disease. Clinical Ophthalmology (Auckland, NZ), 3, 405.
34. Hagberg, M., Vilhemsson, R., Tornqvist, E. W., & Toomingas, A. (2007). Incidence of self-reported reduced productivity owing to musculoskeletal symptoms: association with workplace and individual factors among computer users. Ergonomics, 50(11), 1820-1834.
35. Han, C. C., Liu, R., Liu, R. R., Zhu, Z. H., Yu, R. B., & Ma, L. (2013). Prevalence of asthenopia and its risk factors in Chinese college students. International Journal of Ophthalmology, 6(5), 718-722.
36. ISO./SO/DIS 9241-9 Ergonomic Requirements for Office Work with Visual Display Terminals, Non-keyboard Input Device Requirements, Draft 6. International Standard, International Organization for Standardization, 1998.
37. Jensen, C. (2003). Development of neck and hand-wrist symptoms in relation to duration of computer use at work. Scandinavian Journal of Work, Environment & Health, 197-205.
38. Jensen, C., Borg, V., Finsen, L., Hansen, K., Juul-Kristensen, B., & Christensen, H. (1998). Job demands, muscle activity and musculoskeletal symptoms in relation to work with the computer mouse. Scandinavian Journal of Work, Environment & Health, 418-424.
39. Jensen, C., Finsen, L., Sogaard, K., & Christensen, H. (2002). Musculoskeletal symptoms and duration of computer and mouse use. International Journal of Industrial Ergonomics, 30(4-5), 265-275.
40. Johnson, G, Bogduk, N, Nowitzke, A, & House, D. (1994). Anatomy and actions of the trapezius muscle. Clinical Biomechanics, 9(1), 44-50.
41. Jonai, H., Villanueva, M. B. G., Takata, A., Sotoyama, M., & Saito, S. (2002). Effects of the liquid crystal display tilt angle of a notebook computer on posture, muscle activities and somatic complaints. International Journal of Industrial Ergonomics, 29(4), 219-229.
42. Karlqvist, L. K., Bernmark, E., Ekenvall, L., Hagberg, M., Isaksson, A., & Rostö, T. (1998). Computer mouse position as a determinant of posture, muscular load and perceived exertion. Scandinavian Journal of Work, Environment & Health, 62-73.
43. Keir, P. J., Bach, J. M., & Rempel, D. (1999). Effects of computer mouse design and task on carpal tunnel pressure. Ergonomics, 42(10), 1350-1360.
44. Korhonen, T., Ketola, R., Toivonen, R., Luukkonen, R., Hakkanen, M., & Viikari-Juntura, E. (2003). Work related and individual predictors for incident neck pain among office employees working with video display units. Occupational and Environmental Medicine, 60(7), 475-482.
45. Kothiyal, K., & Bjørnerem, A. M. (2009). Effects of computer monitor setting on muscular activity, user comfort and acceptability in office work. Work: A Journal of Prevention, Assessment and Rehabilitation, 32(2), 155-163.
46. Lassen, C. F., Mikkelsen, S., Kryger, A. I., & Andersen, J. H. (2005). Risk factors for persistent elbow forearm and hand pain among computer workers. Scandinavian Journal of Work, Environment & Health, 122-131.
47. Le, Q., Zhou, X., Ge, L., Wu, L., Hong, J., & Xu, J. (2012). Impact of dry eye syndrome on vision-related quality of life in a non-clinic-based general population. BMC Ophthalmology, 12(1), 22.
48. Lindegard, A., Karlberg, C., Tornqvist, E. W., Toomingas, A., & Hagberg, M. (2005). Concordance between VDU-users' ratings of comfort and perceived exertion with experts' observations of workplace layout and working postures. Applied Ergonomics, 36(3), 319-325.
49. Lindegard, A., Wahlstrom, J., Hagberg, M., Vilhelmsson, R., Toomingas, A., & Tornqvist, E. (2012). Perceived exertion, comfort and working technique in professional computer users and associations with the incidence of neck and upper extremity symptoms. BMC Musculoskeletal Disorders, 13(1), 38.
50. Marmaras, N., Nathanael, D., & Zarboutis, N. (2008). The transition from CRT to LCD monitors: effects on monitor placement and possible consequences in viewing distance and body postures. International Journal of Industrial Ergonomics, 38(7), 584-592.
51. Miljanović, B., Dana, R., Sullivan, D. A., & Schaumberg, D. A. (2007). Impact of dry eye syndrome on vision-related quality of life. American Journal of Ophthalmology, 143(3), 409-415.
52. Mobile access. (2010, July). Pew Research Center. Retrieved from http://goo.gl/1DMWp
53. Müller, H., Gove, J., & Webb, J. (2012, September). Understanding tablet use: a multi-method exploration. In Proceedings of the 14th international conference on Human-computer interaction with mobile devices and services (pp. 1-10). ACM.
54. Nag, P. K., Pal, S., Nag, A., & Vyas, H. (2009). Influence of arm and wrist support on forearm and back muscle activity in computer keyboard operation. Applied Ergonomics, 40(2), 286-291.
55. Netto, K. J., & Burnett, A. F. (2006). Reliability of normalisation methods for EMG analysis of neck muscles. Work: A Journal of Prevention, Assessment and Rehabilitation, 26(2), 123-130.
56. Nielsen, P. K., Søgaard, K., Skotte, J., & Wolkoff, P. (2008). Ocular surface area and human eye blink frequency during VDU work: the effect of monitor position and task. European Journal of Applied Physiology, 103(1), 1-7.
57. Noack-Cooper, K. L., Sommerich, C. M., & Mirka, G. A. (2009). College students and computers: Assessment of usage patterns and musculoskeletal discomfort. Work:a Journal of Prevention Assessment and Rehabilitation, 32(3), 285-298.
58. Nordander, C., Ohlsson, K., Balogh, I., Hansson, G. Å., Axmon, A., Persson, R., & Skerfving, S. (2008). Gender differences in workers with identical repetitive industrial tasks: exposure and musculoskeletal disorders. International Archives of Occupational and Environmental Health, 81(8), 939-947.
59. Park, Y. S., & Han, S. H. (2010). Touch key design for one-handed thumb interaction with a mobile phone: Effects of touch key size and touch key location. International Journal of Industrial Ergonomics, 40(1), 68-76.
60. Peters, M., & Ivanoff, J. (1999). Performance asymmetries in computer mouse control of right-handers, and left-handers with left-and right-handed mouse experience. Journal of Motor Behavior, 31(1), 86-94.
61. Portello, J. K., Rosenfield, M., Bababekova, Y., Estrada, J. M., & Leon, A. (2012). Computer-related visual symptoms in office workers. Ophthalmic and Physiological Optics, 32(5), 375-382.
62. Portello, J. K., Rosenfield, M., & Chu, C. A. (2013). Blink Rate, Incomplete Blinks and Computer Vision Syndrome. Optometry and Vision Science, 90(5), 482-487.
63. Punnett, L., & Bergqvist, U. (1997). Visual Display Unit Work and Upper Extremity Musculoskeletal Disorders: a review of epidemiological findings. National Institute for Working Life, p 1-161.
64. Rempel, D., Willms, K., Anshel, J., Jaschinski, W., & Sheedy, J. (2007). The effects of visual display distance on eye accommodation, head posture, and vision and neck symptoms. Human Factors: The Journal of the Human Factors and Ergonomics Society, 49(5), 830-838.
65. Robinson, M. E., Riley, J. L., & Myers, C. D. (2000). Psychosocial contributions to sex-related differences in pain responses. Progress in Pain Research and Management, 17, 41-70.
66. Schellini, S. A., Sampaio Jr, A. A., Hoyama, E., Cruz, A. A., & Padovani, C. R. (2005). Spontaneous eye blink analysis in the normal individual. Orbit, 24(4), 239-242.
67. Schlote, T., Kadner, G., & Freudenthaler, N. (2004). Marked reduction and distinct patterns of eye blinking in patients with moderately dry eyes during video display terminal use. Graefes Archive for Clinical and Experimental Ophthalmology, 242(4), 306-312.
68. Seghers, J., Jochem, A., & Spaepen, A. (2003). Posture, muscle activity and muscle fatigue in prolonged VDT work at different screen height settings. Ergonomics, 46(7), 714-730.
69. Sheedy, J. E., Smith, R., & Hayes, J. (2005). Visual effects of the luminance surrounding a computer display. Ergonomics, 48(9), 1114-1128.
70. Shen, Wenqi. (1994). Surface pressure and seated discomfort. © W. Shen 1994.
71. Shieh, K. K. (2000). Effects of reflection and polarity on LCD viewing distance. International Journal of Industrial Ergonomics, 25(3), 275-282.
72. Shin, G., & Zhu, X. (2011). User discomfort, work posture and muscle activity while using a touchscreen in a desktop PC setting. Ergonomics, 54(8), 733-744.
73. Simoneau, G. G., & Marklin, R. W. (2001). Effect of computer keyboard slope and height on wrist extension angle. Human Factors: The Journal of the Human Factors and Ergonomics Society, 43(2), 287-298.
74. Simoneau, G. G., Marklin, R. W., & Berman, J. E. (2003). Effect of computer keyboard slope on wrist position and forearm electromyography of typists without musculoskeletal disorders. Physical Therapy, 83(9), 816-830.
75. Skotte, J. H., Nojgaard, J. K., Jorgensen, L. V., Christensen, K. B., & Sjogaard, G. (2007). Eye blink frequency during different computer tasks quantified by electrooculography. European Journal of Applied Physiology, 99(2), 113-119.
76. Sommerich, C. M., Joines, S., Hermans, V., & Moon, S. D. (2000). Use of surface electromyography to estimate neck muscle activity. Journal of Electromyography and Kinesiology, 10(6), 377-398.
77. Straker, L., Burgess-Limerick, R., Pollock, C., Coleman, J., Skoss, R., & Maslen, B. (2008). Children's posture and muscle activity at different computer display heights and during paper information technology use. Human Factors: The Journal of the Human Factors and Ergonomics Society, 50(1), 49-61.
78. Straker, L., Burgess-Limerick, R., Pollock, C., & Maslen, B. (2009). The influence of desk and display design on posture and muscle activity variability whilst performing information technology tasks. Applied Ergonomics, 40(5), 852-859.
79. Straker, L., Burgess-Limerick, R., Pollock, C., Murray, K., Netto, K., Coleman, J., & Skoss, R. (2008). The impact of computer display height and desk design on 3D posture during information technology work by young adults. Journal of Electromyography and Kinesiology, 18(2), 336-349.
80. Straker, L. M., Coleman, J., Skoss, R., Maslen, B. A., Burgess-Limerick, R., & Pollock, C. M. (2008). A comparison of posture and muscle activity during tablet computer, desktop computer and paper use by young children. Ergonomics, 51(4), 540-555.
81. Straker, L. M., O'Sullivan, P. B., Smith, A. J., & Perry, M. C. (2009). Relationships between prolonged neck/shoulder pain and sitting spinal posture in male and female adolescents. Manual Therapy, 14(3), 321-329.
82. Straker, L. M., O'Sullivan, P. B., Smith, A. J., Perry, M. C., & Coleman, J. (2008). Sitting spinal posture in adolescents differs between genders, but is not clearly related to neck/shoulder pain: an observational study. Australian Journal of Physiotherapy, 54(2), 127-133.
83. Straker, L., & Mekhora, K. (2000). An evaluation of visual display unit placement by electromyography, posture, discomfort and preference. International Journal of Industrial Ergonomics, 26(3), 389-398.
84. Straker, L., Pollock, C., Burgess-Limerick, R., Skoss, R., & Coleman, J. (2008). The impact of computer display height and desk design on muscle activity during information technology work by young adults. Journal of Electromyography and Kinesiology, 18(4), 606-617.
85. Szeto, G. P., & Lin, J. K. (2011). A study of forearm muscle activity and wrist kinematics in symptomatic office workers performing mouse-clicking tasks with different precision and speed demands. Journal of Electromyography and Kinesiology, 21(1), 59-66.
86. Szeto, G. P., Straker, L. M., & O’Sullivan, P. B. (2005). A comparison of symptomatic and asymptomatic office workers performing monotonous keyboard work-1: neck and shoulder muscle recruitment patterns. Manual Therapy, 10(4), 270-280.
87. Szeto, G. P., Straker, L. M., & O’Sullivan, P. B. (2009). Examining the low, high and range measures of muscle activity amplitudes in symptomatic and asymptomatic computer users performing typing and mousing tasks. European Journal of Applied Physiology, 106(2), 243-251.
88. Tablet and e-book reader ownership nearly double over the holiday gift-giving period. (2012, Jan.). Pew Research Center. Retrieved from http://goo.gl/1kIjr
89. The effects of computer use on eye health and vision. (2006, August 2). American Optometric Association (AOA). (1995). Retrieved from www.aoa.org
90. Tittiranonda, P., Burastero, S., & Rempel, D. (1998). Risk factors for musculoskeletal disorders among computer users. Occupational Medicine (Philadelphia, Pa.), 14(1), 17-38.
91. Tittiranonda, P., Burastero, S., & Rempel, D. (1999). Risk factors for musculoskeletal disorders among computer users. Occupational Medicine-State of the Art Reviews, 14(1), 17-38.
92. Tornqvist, E. W., Hagberg, M., Hagman, M., Risberg, E. H., & Toomingas, A. (2009). The influence of working conditions and individual factors on the incidence of neck and upper limb symptoms among professional computer users. International Archives of Occupational and Environmental Health, 82(6), 689-702.
93. Trudeau, M. B., Catalano, P. J., Jindrich, D. L., & Dennerlein, J. T. (2013). Tablet Keyboard Configuration Affects Performance, Discomfort and Task Difficulty for Thumb Typing in a Two-Handed Grip. PloS One, 8(6), e67525.
94. Turville, K. L., Psihogios, J. P., Ulmer, T. R., & Mirka, G. A. (1998). The effects of video display terminal height on the operator: a comparison of the 15 degrees and 40 degrees recommendations. Applied Ergonomics, 29(4), 239-246.
95. Uchino, M., Yokoi, N., Uchino, Y., Dogru, M., Kawashima, M., Komuro, A., et al. (2013). Prevalence of Dry Eye Disease and its Risk Factors in Visual Display Terminal Users: The Osaka Study. American Journal of Ophthalmology, 156(4), 759-766.
96. Viikari-Juntura, E., & Silverstein, B. (1999). Role of physical load factors in carpel tunnel syndrome. Scandinavian Journal of Work Environment & Health, 25(3), 163-185.
97. Villanueva, M. B. G., Sotoyama, M., Jonai, H., Takeuchi, Y., & Saito, S. (1996). Adjustments of posture and viewing parameters of the eye to changes in the screen height of the visual display terminal. Ergonomics, 39(7), 933-945.
98. Vogel, D., & Baudisch, P. (2007, April). Shift: a technique for operating pen-based interfaces using touch. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 657-666). ACM.
99. Wahlström, J. (2005). Ergonomics, musculoskeletal disorders and computer work. Occupational Medicine, 55(3), 168-176.
100. Werner, R., Armstrong, T. J., Bir, C., & Aylard, M. K. (1997). Intracarpal canal pressures: The role of finger, hand, wrist and forearm position. Clinical Biomechanics, 12(1), 44-51.
101. Wiesenfeld-Hallin, Z. (2005). Sex differences in pain perception. Gender Medicine, 2(3), 137-145.
102. Willey, M. S. (2011). The effects of user friendly keyboard slope modifications on wrist postures when keyboarding. Work:a Journal of Prevention Assessment and Rehabilitation, 39(4), 441-444.
103. Won, E. J., Johnson, P. W., Punnett, L., & Dennerlein, J. T. (2009). Upper extremity biomechanics in computer tasks differ by gender. Journal of Electromyography and Kinesiology, 19(3), 428-436.
104. Xu, L., You, Q. S., Wang, Y. X., & Jonas, J. B. (2010). Associations between gender, ocular parameters and diseases: the Beijing eye study. Ophthalmic Research, 45(4), 197-203.
105. Yang, J. F., & Cho, C. Y. (2012). Comparison of posture and muscle control pattern between male and female computer users with musculoskeletal symptoms. Applied Ergonomics, 43(4), 785-791.
106. Young, J. G., Trudeau, M., Odell, D., Marinelli, K., & Dennerlein, J. T. (2012). Touch-screen tablet user configurations and case-supported tilt affect head and neck flexion angles. Work: A Journal of Prevention, Assessment and Rehabilitation, 41(1), 81-91.
107. Young, J. G., Trudeau, M. B., Odell, D., Marinelli, K., & Dennerlein, J. T. (2013). Wrist and shoulder posture and muscle activity during touch-screen tablet use: Effects of usage configuration, tablet type, and interacting hand. Work: A Journal of Prevention, Assessment and Rehabilitation, 45(1), 59-71.
108. Zhu, X., & Shin, G. (2012). Shoulder and neck muscle activities during typing with articulating forearm support at different heights. Ergonomics, 55(11), 1412-1419.
109. Ziefle, M. (2002). Sitting posture, postural discomfort, and visual performance: a critical view on the interdependence of cognitive and anthropometric factors in the VDU workplace. International Journal of Occupational Safety and Ergonomics: JOSE, 9(4), 503-514.
110. Zipp, P., Haider, E., Halpern, N., & Rohmert, W. (1983). Keyboard design through physiological strain measurements. Applied Ergonomics, 14(2), 117-122.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-09-05起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-09-05起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw