系統識別號 U0026-2108201415182600
論文名稱(中文) 口服與局部投與Terbinafine微乳劑型之開發研究
論文名稱(英文) Development and Evaluation of Terbinafine Microemulsion for Oral and Topical Administration
校院名稱 成功大學
系所名稱(中) 臨床藥學與藥物科技研究所
系所名稱(英) Institute of Clinical Pharmacy and Pharmaceutical sciences
學年度 102
學期 2
出版年 103
研究生(中文) 蔡佳洵
研究生(英文) Chia-Hsun Tsai
學號 S66014047
學位類別 碩士
語文別 中文
論文頁數 94頁
口試委員 指導教授-蔡瑞真
中文關鍵字 微乳劑  terbinafine  口服投與  局部投與  處方 
英文關鍵字 topical delivery  oral delivery  microemulsion  terbinafine  formulation 
中文摘要 Terbinafine屬於allylamine類,具廣效抗黴菌作用 (有抑菌或殺菌能力),且在低濃度即有殺菌效果 (fungicidal)。目前市售產品以口服和外用製劑為主,口服terbinafine有明顯的首渡代謝效應,且藥品本身溶解度不佳,造成其口服生體可用率低 (40 %),另外長期使用可能會造成腸胃道不適、皮膚過敏反應、味覺異常和肝膽功能異常等不良反應。外用劑型舉凡溶液、乳膏、凝膠到噴霧劑型都有,考量藥物溶解度和穿透能力,添加助溶劑和穿皮促進劑,主要用於皮表淺層處的黴菌治療。
本研究以oleic acid / tween 80:Transcutol® P (1:1) / water:PG (2:1)製備出6個不同組成比例的微乳劑型 (處方A~F),依界面活性劑和助溶劑的多寡各處方的粒徑大小不同 (介於90~800 nm),且在20~25 ℃和濕度50~70 %的條件下保持良好的安定性。體外穿皮試驗結果顯示,最高的穿透速率為微乳劑處方中油相較多者 (處方F,3.37 ± 1.04 μg/cm2/hr);最低的穿透速率為微乳劑處方中水相較多者 (處方B,0.45± 0.10 μg/cm2/hr)。相反的,藥物在表皮層和真皮層的組織濃度則是組成中水相較多者高於油相較多者。依體外穿皮試驗結果選擇微乳劑處方B、D、F進行體內試驗,研究結果顯示口服投與微乳劑型有效增加口服生體可用率,然而微乳劑處方間差異不大;局部投與微乳劑型在給藥處皮膚組織有極高的藥物濃度,血中濃度則與拭去處方後藥物在皮膚的蓄積量有關,並且提高生體可用率。比較不同給藥途徑發現皮膚投與微乳劑處方B,在非塗藥處的皮膚和脂肪組織的曲線下面積與口服投與的曲線下面積最為相近。
綜合研究結果,顯示微乳劑型有效增加terbinafine的溶解度和生體可用率,皮膚投與微乳劑處方B,可改善口服投與的缺點,除了在給藥處皮膚組織可達高的濃度外,並且在其他組織的藥物濃度亦與口服投與相似,因此微乳劑處方B為最佳處方,可以口服或是局部投與,而對於皮癬菌 (dermatophytes)的療效則可進一步探討。
英文摘要 Development and Evaluation of Terbinafine Microemulsion for Oral and Topical Administration
Author:Chia-Hsun Tsai
Advisor:Jui-Chen Tsai
Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine


Terbinafine has poor solubility and has low bioavailability by oral and topical administration. Microemulsion is a stable system and easy to form. Microemulsions offer several advantages such as improving drug-loading, bioavailability and skin penetration, and can be administered via various routes. The objective of this study was to develop terbinafine microemulsion for both oral and topical administration. Solubility test of various excipients, ternary phase diagrams, characterization of each formulation, in vitro skin permeation properties and in vivo tissue distribution following oral and topical administration were studied and evaluated. We developed stable terbinafine microemulsions (oleic acid/tween80:Transcutol ®P (1:1)/water:PG (2:1)) for oral and skin delivery. Six terbinafine formulations representing water-rich (A, B), surfactant-rich (C, D), and oil-rich (E, F) formulations at concentration of 10 mg/ml. Their droplet sizes varied between 90 to 800 nm depending on the amounts of surfactant and cosurfactants. The solubility of terbinafine in microemulsions was improved at least 4 fold. In vitro studies, we found that oil-rich formulation had higher skin fluxes, with lower amount of terbinafine retained in skin. In vivo studies, microemulsions had higher terbinafine concentration in plasma and tissues following oral and topical administration. Formulation B is most promising one for both oral and topical administration for the treatment of dermatophytes.

Key words:topical delivery, oral delivery, microemulsion, terbinafine, formulation


Terbinafine is an antifungal agent from the allylamine class that has potent fungistatic and fungicidal activity against fungi and yeast associated with skin and nail infection. There are a number of oral and topical preparations available commercially. Following oral administration, terbinafine is well absorbed and not affected by the presence of food. However, it undergoes first-pass metabolism, and has poor solubility and oral bioavailability. Nausea, abdominal pain, diarrhea, erythematous rash, taste disturbance and hepatic side effects may occur with long-term therapy. There are a number of topical terbinafine preparations including solution, cream, gel and spray. Considering the poor solubility and ability of skin penetration, coslovent and permeation enhancer are added to those topical formulations to treat topical fungal infections.

Microemulsion is a transparent, optically isotropic and thermodynamically stable dispersion of water, oil and amphiphilic compounds (surfactant and co-surfactant). Microemulsions offer several advantages such as improving drug-loading, bioavailability and skin penetration, and can be administered via various routes. The objective of this study was to develop terbinafine microemulsion for both oral and topical administration.


Terbinafine was provided by Yungshin Pharm Ind. Co. Ltd., Taiwan. Capryol 90 was received from Gattefossé Co. Clotrimazole, tween 80, Transcutol® P, span 80 and PG were purchased from Sigma - Aldrich Co. Lamisil® 250 mg tablet and Lamisil® 1 % Dermgel were products of Novartis Pharmaceuticals UK Ltd. All other chemicals are HPLC or analytical grade.

HPLC method
The concentration of terbinafine was determined using a C18-reversed phase column eluted with mobile phase consisted of acentonitrile and distilled water (40:60) with ortho-phosphoric acid (0.02 M) and triethylamine (0.01 M) at a flow rate of 1 mL/min with UV detection at 224 nm. Clotrimazole was used as internal standard. The HPLC method was validated in different sample matrices.

Study design
Various biocompatible oils, surfactant/cosurfactants, and cosolvents were screened for maximal terbinafine solubility. Oleic acid, tween 80, Transcutol® P and propylene glycol as oil, surfactant and cosurfactants were selected to determine microemulsion regions based on ternary phase diagrams. Droplet size and in vitro skin permeation properties through nude mouse skin were characterized for six terbinafine formulations representing water-rich (A, B), surfactant-rich (C, D), and oil-rich (E, F) formulations at concentration of 10 mg/ml. In vivo tissue distribution following oral and topical administration were studied and evaluated.


Based on ternary phase diagrams, oleic acid, tween 80, Transcutol® P and propylene glycol as oil, surfactant and cosurfactants were selected to prepare microemulsions. The droplet sizes of six formulations were varied between 90 to 800 nm depending on the amounts of surfactant and cosurfactants. Moreover, these microemulsions showed no apparent degradation and separation for up to 5 months under 20~25 ℃ and 50~70 % RH conditions. Skin flux of terbinafine was found to be highest with oil-rich formulation (formulation F, 3.37 ± 1.04 μg/cm-2/hr) and lowest in water-rich formulation (formulation B, 0.45 ± 0.10 μg/cm-2/hr). On the other hand, the amount of terbinafine retained in the epidermis and dermis of water-rich formulation was greater than oil-rich formulation. Based on skin flux results, formulations B, D and F were selected to be evaluated in vivo. Oral administration of microemulsions enhanced terbinafine bioavailability in comparison with the suspended-tablet control, but there was no difference among the microemulsion formulations. Following topical administration, drug concentrations in the treated skin tissues were higher in comparison with the gel control. Plasma concentrations were found to be related to the amount of drug retained in skin after removal of residual formulations and hence improved bioavailability. Area under the skin and adipose tissue concentration curves at the site without drug application was similar between oral and topical administration of formulation B.


Stable microemulsions of terbinafine were developed for oral and topical delivery. Terbinafine microemulsion improved terbinafine solubility by at least 4 folds, and enhanced bioavailability via both oral and topical routes. Topical administration formulation B enhanced local concentrations and achieved similar tissue distributions to oral administration. These results indicated that formulation B can be administered both orally and topically for the treatment of dermatophytes. Its therapeutic efficacy may require further investigation.

論文目次 中文摘要 I
Extended abstract III
誌謝 VI
目錄 VII
表目錄 X
圖目錄 XI
縮寫表 XIII
第壹章 緒論 1
第一節 研究背景 1
第二節 皮癬菌症 (dermatophytosis) 4
一、病原特性 4
二、臨床表徵 5
三、臨床治療與預防 8
第三節 Terbinafine簡介 10
一、物化特性 10
二、藥理作用 11
三、藥物動力學特性 14
四、市售劑型和建議治療療程 16
五、藥物毒性和不良反應 17
第四節 藥物傳輸系統 18
一、微乳劑結構 19
二、微乳劑特性 21
三、微乳劑應用 21
第貳章 研究目的 25
第參章 研究材料與方法 26
第一節 研究材料 26
一、實驗動物 26
二、藥品與試劑 26
三、儀器 29
四、耗材 30
五、繪圖及藥動分析軟體 30
第二節 研究方法 31
一、藥品配製與定量分析 31
二、Terbinafine微乳劑的製備 35
三、體外穿皮試驗(In vitro skin permeation study) 39
四、體內試驗 (In vivo studies) 42
第三節 統計分析 44
第肆章 研究結果 45
第一節 Terbinafine分析方法 45
一、Terbinafine分析圖譜 45
二、分析方法確效 49
第二節 Terbinafine 微乳劑製備 51
一、溶解度試驗 51
二、三相圖繪製 51
三、微乳劑處方配置 55
四、微乳劑處方特性 56
第三節 體外穿皮試驗 59
第四節 體內試驗 62
一、口服給藥 62
二、皮膚給藥 71
三、不同投與途徑之比較 75
第伍章 討論 81
第一節、微乳劑處方特性 81
一、微乳劑處方對terbinafine溶解性之影響 81
二、微乳劑處方對terbinafine粒徑大小之影響 82
第二節、體外穿皮試驗 83
一、微乳劑處方組成對穿皮速率之影響 83
二、粒徑大小對穿皮速率之影響 84
三、微乳劑處方組成對皮膚蓄積量之影響 85
四、處方組成與處方特性的綜合比較 86
第三節、體內試驗 87
一、口服給藥 87
二、經皮給藥 88
第陸章 結論 89
參考文獻 90
參考文獻 Aly, R., 1994. Ecology and epidemiology of dermatophyte infections. Journal of the American Academy of Dermatology 31, 21-25.
Araújo, C.R., Miranda, K.C., Fernandes, O.d.F.L., Soares, A.J., Silva, M.d.R.R., 2009. In vitro susceptibility testing of dermatophytes isolated in Goiania, Brazil, against five antifungal agents by broth microdilution method. Revista do Instituto de Medicina Tropical de São Paulo 51, 9-12.
Araya, H., Tomita, M., Hayashi, M., 2005. The novel formulation design of O/W microemulsion for improving the gastrointestinal absorption of poorly water soluble compounds. International journal of pharmaceutics 305, 61-74.
Asbill, C.S., El-Kattan, A.F., Michniak, B., 2000. Enhancement of transdermal drug delivery: chemical and physical approaches. Critical reviews in therapeutic drug carrier systems 17, 621-658.
Attama, A.A., Momoh, M.A., Builders, P.F., 2012. Lipid Nanoparticulate Drug Delivery Systems: A Revolution in Dosage Form Design and Development.
Baboota, S., Al-Azaki, A., Kohli, K., Ali, J., Dixit, N., Shakeel, F., 2007. Development and evaluation of a microemulsion formulation for transdermal delivery of terbinafine. PDA journal of pharmaceutical science and technology / PDA 61, 276-285.
Balfour, J.A., Faulds, D., 1992. Terbinafine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in superficial mycoses. Drugs 43, 259-284.
Bechert, U., Christensen, J.M., Poppenga, R., Fahmy, S.A., Redig, P., 2010. Pharmacokinetics of terbinafine after single oral dose administration in red-tailed hawks (Buteo jamaicensis). Journal of avian medicine and surgery 24, 122-130.
Chen, H., Chang, X., Weng, T., Zhao, X., Gao, Z., Yang, Y., Xu, H., Yang, X., 2004. A study of microemulsion systems for transdermal delivery of triptolide. Journal of Controlled Release 98, 427-436.
Chen, L., Tan, F., Wang, J., Liu, F., 2012. Microemulsion: a novel transdermal delivery system to facilitate skin penetration of indomethacin. Die Pharmazie 67, 319-323.
Date, A.A., Nagarsenker, M.S., 2008. Parenteral microemulsions: an overview. International journal of pharmaceutics 355, 19-30.
Doktorovova, S., Souto, E.B., Silva, A.M., 2014. Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers – A systematic review of in vitro data. European Journal of Pharmaceutics and Biopharmaceutics 87, 1-18.
Dong, X., Ke, X., Liao, Z., 2011. The microstructure characterization of meloxicam microemulsion and its influence on the solubilization capacity. Drug development and industrial pharmacy 37, 894-900.
Escobar-Chávez, J.J., Rodríguez-Cruz, I.M., Domínguez-Delgado, C.L., Torres, R.D.-., Revilla-Vázquez, A.L., Aléncaster, N.C., 2012. Nanocarrier Systems for Transdermal Drug Delivery.
Fanun, M., 2012. Microemulsions as delivery systems. Current Opinion in Colloid & Interface Science 17, 306-313.
Faraji, A.H., Wipf, P., 2009. Nanoparticles in cellular drug delivery. Bioorganic & medicinal chemistry 17, 2950-2962.
Finlay, A.Y., 1994. Global overview of Lamisil. The British journal of dermatology 130 Suppl 43, 1-3.
Ge, S., Lin, Y., Lu, H., Li, Q., He, J., Chen, B., Wu, C., Xu, Y., 2014. Percutaneous delivery of econazole using microemulsion as vehicle: formulation, evaluation and vesicle-skin interaction. International journal of pharmaceutics 465, 120-131.
Gibaud, S.p., Attivi, D., 2012. Microemulsions for oral administration and their therapeutic applications. Expert Opin. Drug Deliv. 9, 937-951.
Gundogdu, E., Karasulu, H.Y., Koksal, C., Karasulu, E., 2013. The novel oral imatinib microemulsions: physical properties, cytotoxicity activities and improved Caco-2 cell permeability. Journal of microencapsulation 30, 132-142.
Gupta, A.K., Cooper, E.A., 2008. Update in antifungal therapy of dermatophytosis. Mycopathologia 166, 353-367.
Hall, M., Monka, C., Krupp, P., O'Sullivan, D., 1997. Safety of oral terbinafine: results of a postmarketing surveillance study in 25,884 patients. Archives of dermatology 133, 1213-1219.
Hathout, R.M., Mansour, S., Mortada, N.D., Geneidi, A.S., Guy, R.H., 2010. Uptake of microemulsion components into the stratum corneum and their molecular effects on skin barrier function. Molecular pharmaceutics 7, 1266-1273.
Havlickova, B., Czaika, V.A., Friedrich, M., 2008. Epidemiological trends in skin mycoses worldwide. Mycoses 51 Suppl 4, 2-15.
He, C.-X., Hez, Z.-G., Gao, J.-Q., 2010. Microemulsions as drug delivery systems to improve the solubility and the bioavailability of poorly water-soluble drugs. Expert Opin. Drug Deliv. 7, 445-460.
Hosseini-Yeganeh, M., McLachlan, A.J., 2001. Tissue distribution of terbinafine in rats. Journal of pharmaceutical sciences 90, 1817-1828.
Hsu, C.-Y., 2012. Terbinafine Induced Liver Injury : A Case Report and Review of Literatures. 內科學誌 23, 130-136.
Humphreys, F., 2004. Terbinafine. Drug Evaluation 2, 133-155.
Izquierdo, P., Wiechers, J.W., Escribano, E., Garcia-Celma, M.J., Tadros, T.F., Esquena, J., Dederen, J.C., Solans, C., 2007. A study on the influence of emulsion droplet size on the skin penetration of tetracaine. Skin pharmacology and physiology 20, 263-270.
James-Smith, M.A., Alford, K., Shah, D.O., 2007. A novel method to quantify the amount of surfactant at the oil/water interface and to determine total interfacial area of emulsions. Journal of Colloid and Interface Science 310, 590-598.
Jensen, J.C., 1989. Clinical pharmacokinetics of terbinafine (Lamisil). Clin Exp Dermatol 14, 110-113.
Jessup, C.J., Ryder, N.S., Ghannoum, M.A., 2000. An evaluation of the in vitro activity of terbinafine. Medical mycology 38, 155-159.
Kathiravan, M.K., Salake, A.B., Chothe, A.S., Dudhe, P.B., Watode, R.P., Mukta, M.S., Gadhwe, S., 2012. The biology and chemistry of antifungal agents: a review. Bioorganic & medicinal chemistry 20, 5678-5698.
Kavita Mehta, Bhatt, D., 2011. PREPARATION, OPTIMIZATION AND IN VITRO MICROBIOLOGICAL EFFICACY OF ANTIFUNGAL MICROEMULSION. International Journal of Pharma Sciences and Research 2, 2424-2429.
Keller, K.A., 2012. Therapeutic Review: Terbinafine. Journal of Exotic Pet Medicine 21, 181-185.
Kreilgaard, M., 2002. Influence of microemulsions on cutaneous drug delivery. Advanced Drug Delivery Reviews 54, Supplement, S77-S98.
Krishnan-Natesan, S., 2009. Terbinafine: a pharmacological and clinical review. Expert opinion on pharmacotherapy 10, 2723-2733.
Kumar, R., Sinha, V.R., 2014. Preparation and optimization of voriconazole microemulsion for ocular delivery. Colloids and Surfaces B: Biointerfaces 117, 82-88.
Larrucea, E., Arellano, A., Santoyo, S., Ygartua, P., 2001. Combined effect of oleic acid and propylene glycol on the percutaneous penetration of tenoxicam and its retention in the skin. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V 52, 113-119.
Lawrence, M.J., Rees, G.D., 2012. Microemulsion-based media as novel drug delivery systems. Advanced Drug Delivery Reviews 64, Supplement, 175-193.
Leitner, N.R.a.I., 1998. In vitro activity of terbinafine (Lamisil ): An update. Dermatological Treatment 9, 23-28.
Leyden, J., 1998. Pharmacokinetics and pharmacology of terbinafine and itraconazole. Journal of the American Academy of Dermatology 38, S42-S47.
Lusiana, Muller-Goymann, C.C., 2011. Preparation, characterization, and in vitro permeation study of terbinafine HCl in poloxamer 407-based thermogelling formulation for topical application. AAPS PharmSciTech 12, 496-506.
Naik, A., Pechtold, L.A.R.M., Potts, R.O., Guy, R.H., 1995. Mechanism of oleic acid-induced skin penetration enhancement in vivo in humans. Journal of Controlled Release 37, 299-306.
Patel, V., Kukadiya, H., Mashru, R., Surti, N., Mandal, S., 2010. Development of Microemulsion for Solubility Enhancement of Clopidogrel. Iranian Journal of Pharmaceutical Research 9, 327-334.
Pires, C.A.A., Cruz, N.F.S.d., Lobato, A.M., Sousa, P.O.d., Carneiro, F.R.O., Mendes, A.M.D., 2014. Clinical, epidemiological, and therapeutic profile of dermatophytosis. Anais Brasileiros de Dermatologia 89, 259-264.
Ryu, J.K., Yoo, S.D., 2012. Preparation and evaluation of bicyclol microemulsions for enhanced oral bioavailability. Drug development and industrial pharmacy 38, 1313-1318.
Sane, R., Mittapalli, R.K., Elmquist, W.F., 2013. Development and evaluation of a novel microemulsion formulation of elacridar to improve its bioavailability. Journal of pharmaceutical sciences 102, 1343-1354.
Santos, P., Watkinson, A.C., Hadgraft, J., Lane, M.E., 2008. Application of microemulsions in dermal and transdermal drug delivery. Skin pharmacology and physiology 21, 246-259.
Schwarz, J.S., Weisspapir, M.R., Friedman, D.I., 1995. Enhanced transdermal delivery of diazepam by submicron emulsion (SME) creams. Pharmaceutical research 12, 687-692.
Sharma, G., Wilson, K., van der Walle, C.F., Sattar, N., Petrie, J.R., Ravi Kumar, M.N., 2010. Microemulsions for oral delivery of insulin: design, development and evaluation in streptozotocin induced diabetic rats. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V 76, 159-169.
Sintov, A.C., Botner, S., 2006. Transdermal drug delivery using microemulsion and aqueous systems: Influence of skin storage conditions on the in vitro permeability of diclofenac from aqueous vehicle systems. International journal of pharmaceutics 311, 55-62.
Smith, E.B., 2000. The treatment of dermatophytosis: Safety considerations. Journal of the American Academy of Dermatology 43, S113-S119.
Sommerville, M.L., Cain, J.B., Johnson, C.S., Jr., Hickey, A.J., 2000. Lecithin inverse microemulsions for the pulmonary delivery of polar compounds utilizing dimethylether and propane as propellants. Pharmaceutical development and technology 5, 219-230.
Sonneville-Aubrun, O., Simonnet, J.T., L'Alloret, F., 2004. Nanoemulsions: a new vehicle for skincare products. Advances in colloid and interface science 108-109, 145-149.
Streck, L., de Araújo, M.M., de Souza, I., Fernandes-Pedrosa, M.F., do Egito, E.S.T., de Oliveira, A.G., da Silva-Júnior, A.A., 2014. Surfactant–cosurfactant interactions and process parameters involved in the formulation of stable and small droplet-sized benznidazole-loaded soybean O/W emulsions. Journal of Molecular Liquids 196, 178-186.
tablet, L., 2013. Lamisil tablet product information.
Talegaonkar, S., Azeem, A., Ahmad, F.J., Khar, R.K., Pathan, S.A., Khan, Z.I., 2008. Microemulsions: a novel approach to enhanced drug delivery. Recent Pat Drug Deliv Formul 2, 238-257.
Tayel, S.A., El-Nabarawi, M.A., Tadros, M.I., Abd-Elsalam, W.H., 2013. Promising ion-sensitive in situ ocular nanoemulsion gels of terbinafine hydrochloride: Design, in vitro characterization and in vivo estimation of the ocular irritation and drug pharmacokinetics in the aqueous humor of rabbits. International journal of pharmaceutics 443, 293-305.
Terbinafine product information, C.c., 2005. Product Information-Terbinafine.
Torchilin, V.P., 2001. Structure and design of polymeric surfactant-based drug delivery systems. Journal of controlled release : official journal of the Controlled Release Society 73, 137-172.
Von Corswant, C., Thorén, P., Engström, S., 1998. Triglyceride-based microemulsion for intravenous administration of sparingly soluble substances. Journal of pharmaceutical sciences 87, 200-208.
Wang, A., Ding, H., Liu, Y., Gao, Y., Zeng, Z., 2012. Single dose pharmacokinetics of terbinafine in cats. Journal of feline medicine and surgery 14, 540-544.
Williams, M.M., Davis, E.G., KuKanich, B., 2011. Pharmacokinetics of oral terbinafine in horses and Greyhound dogs. Journal of veterinary pharmacology and therapeutics 34, 232-237.
Zhang, J., Michniak-Kohn, B., 2011. Investigation of microemulsion microstructures and their relationship to transdermal permeation of model drugs: ketoprofen, lidocaine, and caffeine. International journal of pharmaceutics 421, 34-44.
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-28起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-28起公開。

  • 如您有疑問,請聯絡圖書館