進階搜尋


下載電子全文  
系統識別號 U0026-2108201414531500
論文名稱(中文) 利用電漿放電技術取得氫氣並純化以驅動燃料電池
論文名稱(英文) Hydrogen Production with Plasma Decomposition Method and Hydrogen Purification for fuel cell
校院名稱 成功大學
系所名稱(中) 太空與電漿科學研究所
系所名稱(英) Institute of Space and Plasma Sciences
學年度 102
學期 2
出版年 103
研究生(中文) 江炫慶
研究生(英文) Hsuan-Ching Chiang
學號 la6011132
學位類別 碩士
語文別 英文
論文頁數 73頁
口試委員 指導教授-陳秋榮
共同指導教授-西田靖
口試委員-西村泰太郎
中文關鍵字 產氫  電漿  介電質阻擋放電  高壓脈衝 
英文關鍵字 Hydrogen production  plasma  dielectric barrier discharge  pulse voltage 
學科別分類
中文摘要 綠色能源是現今社會上一個重要的議題,太陽能、風能、氫能都是綠色能源的一種,燃料電池是氫能運用的一種,而他需要氫氣來提供他運作,因此產氫變成了一個綠色能源的重要議題。
這個研究的最終目標是將產氫系統放置於燃料電池車上,因為氫氣的沸點低,一般的產氫方式需要將氫氣壓縮並冷卻而液化,並放置於高壓鋼瓶中,這是相對消耗能量的,若將沸點較接近常溫的液態碳氫化合物放置於車上以直接產氫供給於燃料電池,如此一來便可省下儲存與運送液態氫的能量消耗。我們的產氫方式是應用電漿放電分解碳氫化合物,我使用高壓脈衝來供給介電質阻擋放電電極去加速高能電子來撞擊分解碳氫鍵結,電壓脈衝寬度為10μs,放電頻率為4 kHz,氣體為1.5大氣壓的甲烷或丙烷,目前也嘗試過許多不同的電極結構和尺寸來測量放電產氫的效果,本篇論文其中一個重要的目的是找出最佳的碳氫化合物氣體之放電環境及電極的形式來取得最佳的產氫效率及產氫量。
另一項重點是利用純化系統取得純氫,我們使用鈀銅合金薄膜來過濾氫氣,因為燃料電池需要純氫來供應使其驅動汽車,因為鈀膜合金的晶格較小剛好只有氫氣可以通過,所以使用鈀膜合金的純化系統的純化率相當的高,因此我們以此做為過濾器來純化氫氣。
英文摘要 Currently, clean energy is an important issue. There are many kinds of clean energy such as solar energy, wind energy, hydrogen, and hydroelectric power. The fuel cell is one of clean energy technology that consumes hydrogen and does not produce harmful by-products. Thus, hydrogen production becomes an important clean energy matter.
In this thesis, our goal is to develop an on-board Hydrogen generation system for fuel cell cars. This system produces Hydrogen on the car and directly provides Hydrogen to the fuel cell. On-board Hydrogen generation for transportation is energy saving. The reason is Liquid Hydrogen or Liquid hydrocarbon should be compressed and cooled down to put into the storage tank. However, the melting point of hydrocarbon is much closer to the room temperature than that of Hydrogen, so compressing and cooling down Hydrogen needs larger energy consumption. Therefore, we develop on-board Hydrogen generation system for use in fuel cell vehicles.
There are many kinds of Hydrogen production methods. Our method is based on a pulsed dielectric barrier discharge (D.B.D) plasma system for production of hydrogen. The D.B.D. is energized by a pulse voltage (≦12 kV) with pulse width ~10 μs at a repetition rate of about 4 kHz in the high pressure methane (>1.5 atm) to decompose the methane into hydrogen and carbon. We have already used many different kinds of electrodes, such as the bolt type electrode, the smooth surface type electrode and the multi-bolt type electrode, to determine the type of electrode that can give better hydrogen production. One of the main work of this thesis is to find the better condition for hydrogen production and hydrocarbon decomposition efficiency.
Another key technology is to make a hydrogen purification system to purify the Hydrogen from the mixed gas. The filter for Hydrogen purification is made of Palladium Copper alloy. This alloy has the unique attribute. It can separate Hydrogen from mixed gas, but it has some particular operating condition (pressure difference and operation temperature, etc.). In this research I want to develop a hydrogen purification system get pure Hydrogen from the mixed gas, and find the best operating condition of the system on board Hydrogen generation system.
論文目次 摘要 I
Abstract II
致謝 IV
Content V
List of Tables VII
List of Figures VIII
Chapter 1 Introduction 1
1.1 Brief History of Development of Energy 1
1.2 Hydrogen Generation Method 4
1.3 Hydrogen Purification Method 8
1.4 Motivation and Purpose 11
Chapter 2 Basic Theory 15
2.1 Basic Principle of Plasma 15
2.2 Plasma Discharge 17
2.2.1 Arc discharge 22
2.2.2 Corona discharge 24
2.2.3 Dielectric Barrier Discharge 26
2.2.4 Energy Transfer of Short Voltage Pulse 28
2.3 Gas Permeation Process in Filter 29
2.4 Palladium Membrane 31
Chapter 3 Experimental System on H2 Production and H2 Purification 35
3.1 Instrument and Equipment 35
3.2 Experimental Process for Hydrogen Production 42
3.3 Experimental Process for Hydrogen Purification 48
Chapter 4 Result and Discussion 51
4.1 Different Gas Pressure on Decomposition Efficiency 51
4.2 Different Electrode Size for Hydrogen Generation 55
4.3 Effect of Electrode Surface on Hydrogen Generation 61
4.4 Electrode Temperature Effect on Hydrogen Generation 65
4.5 Pure Hydrogen Separation 69
Chapter 5 Summary and Future Work 71
Reference 72

參考文獻 [1] John, R. (2005), “Energy in the 21st century”, World Scientific.
[2] 黃鎮江 (2008), “年燃料電池” 第三版;滄海書局;.
[3] 陳維新 (2014), “能源科技與永續發展” 七版;高立發行.
[4] Meng, N., Michael (K.H.), L., Dennis (Y.C.), L., Sumathy, K. (2007), “A Review and Recent Developments in Photocatalytic Water-Splitting Using TiO2 for Hydrogen Production”, Renewable and Sustainable Energy Reviews 11, 401-425.
[5] Nishida Y., Cheng, C. Z., Iwasaki, K. (2014), “Hydrogen Production From Hydrocarbons with Use of Plasma Discharges Under High Pressure Condition”, IEEE Transactions on Plasma Science, doi:10.1109/TPS.2014.2337351.
[6] Nehra V., Kumar A. and Dwivedi H. K. (2008), “Atmospheric Non-Thermal Plasma Sources”; International Journal of Engineering 2, 1.
[7] Ledernez, L., Olcaytug F., Urban G. (2012), “Paschen Curves and Film Growth Rates in Low Pressure Capacitively Coupled Magnetron Plasma Polymerization”, Contributions to Plasma Physics 52, 4, 283 – 288.
[8] Avivi, P., Deutsch, F. (1963), “A possible deviation from Paschen's law in hydrogen at low temperature”, British Journal of Applied Physics, 14, 819-819.
[9] Braz, J. (2004), “Plasma processing of municipal solid waste”, Brazilian Journal of Physics 34, 1587-1593.
[10] Fridman, A.A., Petrousov, A., Chapelle, J., Cormier, J.M., Czernichowski, A., Lesueur, H., and Stevefelt, J. (1994), “Mod`ele physique de l’arc glissant”, J. Phys. III France 4, 1449–1465.
[11] Bromberg, L., Cohn, D. R., and Rabinovich, A. (1998), “Plasma Reforming of Methane”, Energy and Fuels, 12, 11-18.
[12] Chang, J.S., Phil, A. L., and Yamamoto, T. (1991), “Corona Discharge Processes”; IEEE Transactions on Plasma Science 19, 6,.
[13] Konelschatz, U., Eliasson, B. ,and Egli, W. (1997), “Dielectric-Barrier Discharges. Principle and Applications”; Journal de Physique IV France 7, 47-66.
[14] Douyan, W. (2011), “Energy Transfer Efficiency of Nano-seconds Pulsed Power Generator for Nonthermal Plasma Processing Technique”, IEEE Transactions on Dielectrics and Electrical Insulation 18, 1091-1096 .
[15] John, W. P., and Donelson, R. (2006), “Developments and Design of Novel (Non-Palladium-Based) Metal Membranes for Hydrogen Separation”, CSIRO Manufacturing and Infrastructure Technology 45, 5657–5674.
[16] Paglieri, S. N., and Way, J. D. (2002), “Innovations in palladium membrane research”, Separation & Purification Reviews 31, 1-169.
[17] Knapton, A.G. (1977), “Palladium alloys for hydrogen diffusion membranes”, Platinum Metals Review 21, 44-50.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-09-02起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-09-02起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw