進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2108201410380300
論文名稱(中文) 比較奈米結構與噴砂酸蝕之表面處理植體於迷你豬之骨整合效應
論文名稱(英文) Comparison between the osseointegration of the nano-structured implant with SLA implant in minipig animal models
校院名稱 成功大學
系所名稱(中) 口腔醫學研究所
系所名稱(英) Institute of Oral Medicine
學年度 102
學期 2
出版年 103
研究生(中文) 吳孟峰
研究生(英文) Meng-Feng Wu
學號 t46014078
學位類別 碩士
語文別 英文
論文頁數 72頁
口試委員 指導教授-李澤民
共同指導教授-袁國
口試委員-曾春祺
口試委員-林睿哲
口試委員-陳炳宏
中文關鍵字 植體  奈米結構  骨整合  雷射 
英文關鍵字 dental implants  nanoscale  osseointegration  laser-induced 
學科別分類
中文摘要 在現今的臨床牙科治療,針對缺失的自然牙齒利用人工植體取代已成為常見並優先考量的治療選擇。然而植體與齒槽骨之間產生骨整合現象進而提供植體初期穩定度扮演著關鍵因子。過去研究植體的文獻顯示經由植體本身的設計,包括螺紋的型態、表面處理的化學組成份、植體的型態都會影響骨整合的效應。此外,近期植體發展的趨勢包含運用奈米結構表面處理的技術,奈米結構表面具有促進細胞黏附及分化之特性,已有部分研究顯示奈米結構表面處理可促進成骨細胞的分化。另外實驗動物迷你豬的齒槽骨型態與密度較為接近人體的口內狀況,因此本研究目的為利用具有奈米結構表面處理的植體,並與目前已有許多文獻顯示具有高度骨頭植體接觸比例和能產生較高移除扭力植之噴砂酸蝕(Sandblasted, Large grit, Acid-etched, SLA)表面處理的植體在迷你豬口內之骨整合效果做比較。
本實驗分成三組不同表面處理之植體:(1)控制組—噴砂酸蝕SLA (2)實驗組1—第一代奈米結構植體與實驗組2—第二代奈米結構植體。第一階段(模擬人體缺牙區之齒槽脊) —拔除9隻迷你豬之下顎骨兩側乳牙第一小臼齒至第三小臼齒及下面恆牙牙胚,等待三個月傷口癒合。第二階段—植入植體,於下顎雙側每一邊拔牙區各植入四根植體,九隻豬共72支植體,另外於雙側腿骨每一邊各植入五根植體,其中分成(1)控制組—無表面處理的第一代結構植體(2)實驗組1—第一代奈米結構植體與實驗組2—第二代奈米結構植體。於植入植體及犧牲當次分別利用共振原理偵測下顎骨植體之穩定度(implant stability quotient),之後分別於植入後8、12、24星期犧牲,製作切片分析下顎骨植體與骨頭間接觸的組織學表現與測量腿骨植體之反轉扭力值。
在反轉扭力值測試方面,於第8周與第12週之組別,顯示二代奈米結構植體與無表面處理的第一代結構植體有顯著差異,並且反轉扭力值優於第一代結構植體與無表面處理的第一代結構植體;第24周三者則無差異。在植體表面與骨頭接觸比例(BIC)部分,於第8周與24周三種植體無統計上顯著差異,然而第12周顯示三者有顯著差異,噴砂酸蝕SLA擁有最高的植體表面與骨頭接觸比例,其次是二代奈米結構植體。植體之穩定度(implant stability quotient)(ISQ)測量方面,第8和12周,噴砂酸蝕SLA擁有最好的結果,並且與第一二代奈米結構植體有顯著差異;而在第24周,第二代奈米結構植體與噴砂酸蝕SLA無顯著差異。
總而言之,表面粗糙之奈米結構植體比無表面處理之植體能得到更好的骨整合,並且於早期癒合期間即可達到良好的骨整合結果,其中第二代奈米結構植體形成骨整合的能力表現與噴砂酸蝕SLA植體是較為接近的。具有奈米結構的植體在臨床上可當作選擇的考量之ㄧ,但未來仍需要更多的動物實驗去證明及評估其相關的特性。
英文摘要 Nowadays, using dental implants for replacement of missing teeth is a common and prior dental treatment choice. However, the establishment of osseointegration between implant and alveolar bone is the key point to provide primary stability for implants. There are many past literatures showed the implant design, including screw type, chemical component, topography of implant surface can affect the osseointegration. Furthermore, current trends in clinical dental implant therapy include use of dental implant surface embellished with nanoscale topographies. The nanoscale topography has the characteristics of stimulating cell adhesion, and enhancing cell proliferation. Several studies have shown nanoscale topography also enhances osteoblast differentiation. Moreover, the alveolar bone morphology and bone density of minipigs are closer to human, so the aim of the study is to applicate special nanoscale topography implant surface, and compare with the SLA (Sandblasted, Large grit, Acid-etched) surface implant that many literatures have showed high bone-to-implant contact and high remove torque, to evaluate the osseointegration in minipigs.
The study divids into three different surface implant. (1) control group—ITI system SLA implant. (2) test group—Type I and Type II nanoscale implant. First stage surgery(mimic the human edentulous ridge) — extract bilateral mandibular first to third premolar of milk teeth and underlying permanent premolar germs of 9 minipigs , and then wait 3 months for bone healing and during the period, take ISQ test (implant stability quotient) at implant insertion and sacrifice. Second stage ( implant insertion ) — insert 4 implants in every side of bilateral mandibular extraction area, totally 72 implants, and in addition, also insert 5 implants in every side of bilateral femur, which divide into (1) control group—non-surface treatment Type I implant. (2) test group—Type I and Type II nanoscale implant. Minipigs will be sacrificed at 8, 12, and 24 weeks after implant insertion. Then, histomorphometric analysis and bone-to–implant contact (BIC) of mandibular samples and removal torque value measurement of femur samples will be examined.
In removal torque value measurement (RTV), there was significant difference between type II and non-surface treatment type I implants, but no significant difference between type I and non-surface treatment type I implants in 8-week group. In 12-week group, the removal torque value of
type II implant was superior to type I and non-surface treatment type I implants. Moreover, there was no statistically difference in 24-week group.
In the histomorphometric analysis, there was no statistically difference in the bone-to–implant contact (BIC) between the three different implants in 8 and 24 weeks. However, in 12 weeks, there were significant differences between them, whose BIC values were (type I) 58±8 / (type II) 68±9/ (SLA) 82±4, respectively. The BIC values of type II and SLA implants increased about 5-6% from 8 weeks to 12 weeks, while type I implants remained in a stable state. In addition, both in 8 and 12 -week group, there were significant differences in ISQ values. SLA implants had superior ISQ values to type I and II implants. In 24-week group the ISQ value of type I implant showed a significant difference lower than type II and SLA implants.
The results of the study indicated that nanoscale with rough surface topography indeed can produce better bone anchorage than non-treatment surface. Moreover, the nanoscale topography implant can produce good osseointegration at early bone healing period and the performance of osseointegration in type II implant is closer to SLA implant. To sum up, the nanoscale topography implants may be a choice for clinical use, but it is still necessary for more in vivo studies to prove and evaluate other characteristics of nanoscale topography implants.
論文目次 Chapter 1. Introduction……………………………………...1
1.1 Background………………………………………………..1
1.1.1 Dental Implant…………………………………………………1
1.1.2 Implant Surface Topography…………………………………..4
1.1.2.1 Surface Roughness………………………………………5
1.1.3 Nanostructured Surface………………………………………..7
1.1.4 Nanostructured Implant………………………………………..8
1.1.5 Sand Blasting and Acid Etching Implant…………………….10
1.1.6 Animal Selection……………………………………………..12
1.2 Motivation………………………………………………..12
1.3 Objective…………………………………………………13
Chapter 2. Materials and Methods…………………………14
2.1 Implant Design and Surface Treatment………………….14
2.1.1 Implant Design……………………………………………...14
2.1.2 Surface Treatment…………………………………………...15
2.1.2.1 Sand Blasting and Acid Etching………………………..15
2.1.2.2 Nanostructured Surface………………………………...15
2.2 Analysis of Surface Characteristics……………………...15
2.2.1 Topographic Observation by SEM…………………………15
2.2.2 Roughness Analysis……………………………………….15
2.3 Animal Study…………………………………………….16
2.3.1 Animals and Anesthesia…………………………………..16
2.3.2 Surgery Procedure…………………………………………16
2.3.3 Radiographic Analysis…………………………………….18
2.3.4 Histomorphometric Analysis……………………………...18
2.3.5 Implant Stability Quotient Measurement (ISQ)…………..19
2.3.6 Removal Torque Value Measurement (RTV)……………...20
2.4 Statistical Analysis………………………………………20
Chapter 3. Results………………………………………….21
3.1 Clinical Findings………………………………………...21
3.2 Radiographic Analysis…………………………………..21
3.3 Surface Characteristic Analysis…………………………21
3.3.1 Topographic Observation…………………………………..21
3.4 Removal Torque Measurement………………………….22
3.5 Histomorphometric Analysis of Bone to Implant
Contact…………………………………………………...22
3.6 Implant Stability Quotient Measurement……………......23
Chapter 4. Discussion……………………………………...25
4.1 Study Design……………………………………………..25
4.2 Surface Characteristic Analysis………………………….27
4.3 Removal Torque Measurement…………………………..28
4.4 Implant Stability Quotient Measurement………………...30
4.5 Histomorphometric Analysis of Bone to Implant Contact…………………………………………………...34
Chapter 5. Conclusions…………………………………….36
References……………………………………………………..37

List of Tables
Table 1 : Removal torque value (RTV) of 8 weeks........ 47
Table 2 : Removal torque value (RTV) of 12 weeks........47
Table 3 : Removal torque value (RTV) of 24 weeks........47
Table 4 : Implant stability quotient (ISQ) value of implant
insertion...48
Table 5 : ISQ value of Type I implant of 8, 12, 24 weeks.48
Table 6 : ISQ value of Type II implant of 8, 12, 24
weeks……………...48
Table 7 : ISQ value of SLA (Straumann) implant of 8, 12, 24
weeks…..48
Table 8 : ISQ value of implant after 8 weeks implant
insertion………...49
Table 9 : ISQ value of implant after 12 weeks implant
insertion ………49
Table 10: ISQ value of implant after 24 weeks implant
insertion……….49
Table 11: The percentage of BIC of 8 weeks ............50
Table 12: The percentage of BIC of 12 weeks............50
Table 13: The percentage of BIC of 24 weeks ...........50

List of Figures
Figure 1 A : Study flow chart……………………………………………51
B : Study time table.................52
Figure 2 : Implant position...................53
Figure 3 : Design of implants used in the experiment....54
Figure 4 : Surface topography observed by SEM………………………55
Figure 5 : Surgical procedures: extraction..............56
Figure 6 : Surgical procedures: implant insertion.......57
Figure 7 A : Periapical x-ray..........................58
B : Radiogram of femur........................58
C : 3-Dimensional radiogram of mandible.........59
D : Panoramic radiogram of mandible.............59
E : 3-Dimensional slices of mandible............60
Figure 8 : Clinical photogram of implants site after
sacrifice.........60
Figure 9 A : Evaluation of the implant stability using the
Osstell device.61
B : A photograph of the removal torque testing
machine(MARK-IO).....................61
Figure 10 : Removal torque value of 8 weeks............62
Figure 11 : Removal torque value of 12 weeks...........62
Figure 12 : Removal torque value of 24 weeks...........63
Figure 13 : Implant stability quotient (ISQ) value of
implant insertion...64
Figure 14 : ISQ value of Type I implant in 8, 12, 24
weeks…………….64
Figure 15 : ISQ value of Type II implant in 8, 12, 24
weeks…………...65
Figure 16 : ISQ value of SLA (Straumann) implant in 8, 12,
24 weeks..65
Figure 17 A : ISQ value of 8 week group………………………………66
B : ISQ value of 12 week group……………………………..66
C : ISQ value of 24 week group……………………………..67
Figure 18 A : Bone-to-implant contact of 8 weeks……………………..68
B : Bone-to-implant contact of 12 weeks……………………68
C : Bone-to-implant contact of 24 weeks……………………69
Figure 19 A : Histomorphometric analysis of 8 weeks…………………70
B : Histomorphometric analysis of 12 weeks.....71
C : Histomorphometric analysis of 24 weeks......72
參考文獻 Albrektsson T, Branemark PI, Hansson HA, Lindstrom J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 52 (2), 155–170 (1981).

Albrektsson, T., Hansson, H.A. & Ivarsson, B. Interface analysis of titanium and zirconium bone implants. Biomaterials 6, 97–101(1985).

Albrektsson T, Zarb G, Worthington P, Eriksson A.R. The long-term efficacy of currently used dental implants. A review and proposed criteria of success. Int J Oral Maxillofac Implant 1, 11–25 (1986).

Albrektsson T, Sennerby L. State of the art in oral implants. Journal of Clinical Periodontology 18, 474–481 (1991).

Albektsson T. Is surgical skill more important for clinical success than changes in implant hardware? Clinical implant dental related research 3, 6–7 (2001).

Albrektsson, T. The host-implant interface: biology. The International journal of prosthodontics 16 Suppl, 29-30; discussion 47–51 (2003).

Albrektsson, T., Sennerby, L. & Wennerberg, A. State of the art of oral implants. Periodontology 2000 47, 15–26 (2008).

Anselme K. Osteoblast adhesion on biomaterials. Biomaterials 21, 667–681 (2000).

Aerssens J, Boonen S, Lowet G, Dequeker J. Interspecies differences in bone composition, density, and quality: potential implications for in vivo bone research. Endocrinology 139, 663–670 (1998).

Anselme K, Bigerelle M, Noel B, Iost A, Hardouin P. Effect of grooved titanium substratum on human osteoblastic cell growth. Journal of Biomedical Materials Research 60, 529–540 (2002).

AI Pearce, RG Richards, S Milz, E Schneider and SG Pearce. Animal models for implant biomaterial research in bone: a review. European Cells and Materials Vol. 13, 1–10 (2007) .

Anders Palmquist, Fredrik Lindberg, Lena Emanuelsson, Rickard Bra˚nemark, Ha˚kan Engqvist, Peter Thomsen1. Biomechanical, histological, and ultrastructural analyses of laser micro- and nano-structured titanium alloy implants: A study in rabbit. Journal of Biomedical Materials Research Part A, 1476–1486 (2009).

Aparicio, C., Lang, N.P. & Rangert, B. Validity and clinical significance of biomechanical testing of implant/bone interface. Clinical Oral Implants Research 18 (Suppl. 2), 2–7 (2006).

Abrahamsson, I., Berglundh, T., Linder, E., Lang, N.P. & Lindhe, J. Early bone formation adjacent to rough and turned endosseous implant surfaces. An experimental study in the dog. Clinical Oral Implants Research 15, 381–392 (2004).

Abrahamsson, I., Linder, E. & Lang, N.P. Implant stability in relation to osseointegration: an experimental study in the Labrador dog. Clinical Oral Implants Research. 20, 313–318 (2009).

Bornstein, M.M., Schmid, B., Belser, U.C., Lussi, A. & Buser, D. Early loading of nonsubmerged titanium implants with a sandblasted and acid-etched (SLA) surface: 5-year results of a prospective study in partially edentulous patients. Clinical Oral Implants Research 16, 631–638 (2005).

Buser, D.; Nydegger, T.; Oxland, T.; Cochran, D.L.; Schenk, R.K.; Hirt, H.P.; Snetivy, D. & Nolte, L.P. Interface shear strength of titanium implants with a sandblasted and acid-etched surface: a biomechanical study in the maxilla of miniature pigs. Journal of Biomedical Materials Research 45, 75–83 (1999).

Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. Journal of Biomedical Materials Research 25, 889–902 (1991).

Branemark PI. Vital microscopy of bone marrow in rabbit. Scand J Clin Lab Invest 11(Suppl.38), 1–82 (1959).

Branemark PI. Osseointegration and its experimental studies. Journal of Prosthetic Dentistry 50, 399–410 (1983).

Branemark, P.I., Hansson, B.O., Adell, R., Breine, U., Lindstro¨m, J., Halle´n, O. & Ohman, A. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scandinavian Journal of Plastic and Reconstructive Surgery. Supplementum 16, 1–132 (1977).

Brett PM, Harle J, Salih V, Mihoc R, Olsen I, Jones FH, Tonetti M. Roughness response genes in osteoblasts. Bone 35, 124–133 (2004).

Bereznai M, Pels öczi I, Tóth Z, Turzó K, Radnai M, Bor Z, Fazekas A. Surface modifications induced by ns and sub-ps excimer laser pulses on titanium implant material. Biomaterials 24, 4197–4203 (2003).

Cochran, D.L., Buser, D., ten Bruggenkate, C.M., Weingart, D., Taylor, T.M., Bernard, J.P., Peters, F. & Simpson, J.P. The use of reduced healing times on ITI implants with a sandblasted and acid-etched (SLA) surface: early results from clinical trials on ITI SLA implants. Clinical Oral Implants Research 13, 144–153 (2002).

Cochran DL, Schenk RK, Lussi A, Higginbottom FL, Buser D. Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: A histometric study in the canine mandible. Journal of Biomedical Materials Research 40, 1–11 (1998).

Cornellini, R., Cangini, F., Covani, U., Barrone, A. & Buser, D. Immediate restoration of single tooth implants in mandibular molar sites: a 12 months preliminary report. The International Journal of Oral & Maxillofacial Implants 19, 855–860 (2004).

Cooper, L.F. A role for surface topography in creating andmaintaining bone at titanium endosseous implants. Review. Journal of Prosthetic Dentistry 84, 522–534 (2000).

Cho SA, Jung SK. A removal torque of the laser-treated titanium
implants in rabbit tibia. Biomaterials 24(26), 4859–4863 (2003).

Christina P. C. Sim, Niklaus P. Lang. Factors influencing resonance frequency analysis assessed by Osstell TM mentor during implant tissue integration: I. Instrument positioning, bone structure, implant length. Clinical. Oral Implant Research 21, 598–604 (2010).

Davies JE. Bone bonding at natural and biomaterial surfaces. Biomaterials 28, 5058–5067 (2007).

Derhami K, Wolfaardt JF, Dent M, Faulkner G, Grace M. Assessment of the Periotest device in baseline mobility measurements of craniofacial implants. The International Journal of Oral & Maxillofacial Implants 10, 221–229 (1995).

De Smet, E., Jaecques, S., Vandamme, K., Vander Sloten, J. & Naert, I. Positive effect of early loading on implant stability in the bi-cortical guinea-pig model. Clinical Oral Implants Research 16, 402–407 (2005).

Egermann M, Goldhahn J, Schneider E. Animal models for fracture treatment in osteoporosis. Osteoporos Int 16 Suppl 2, S129–S138 (2005).

Gustavo Mendonca, Daniela B.S. Mendonca, Francisco J.L. Aragaõ, Lyndon F. Cooper. Advancing dental implant surface technology – From micron to nanotopography. Biomaterials 29, 3822–3832 (2008).

Gaggl, A., Schultes, G., Muller, WD., Karcher, H. Scanning electron microscopical analysis of laser-treated titanium implant surfaces—A comparative study. Biomaterials 21, 1067–1073 (2000).

Glauser, R., Lundgren, A.K., Gottlow, J., Sennerby, L., Portmann, M., Ruhstaller, P. & Hämmerle, C.H. Immediate occlusal loading of Branemark TiUniteTM implants placed predominantly in soft bone: 1-year results of a prospective clinical study. Clinical Implant Dentistry & Related Research 5 (Suppl. 1), 47–56 (2003).

Hirao, M., Sugamoto, K., Tamai, N., Oka, K., Yoshikawa, H., Mori, Y., Sasaki, T. Macro-structural effect of metal surfaces treated using computer-assisted yttrium-aluminum-garnet laser scanning on bone-implant fixation. Journal of Biomedical Materials Research A 73, 213–222 (2005).

Huang, Y.H. Xiropaidis, A.V. Sorensen, R.G. Albandar, J.M. Hall, J. & Wikesjo, U.M. Bone formation at titanium porous oxide (TiUnite) oral implants in type IV bone. Clinical Oral Implants Research 16, 105–111 (2005).

Huwiler, M.A., Pjetursson, B.E., Bosshardt, D.D., Salvi, G.E. & Lang, N.P. Resonance frequency analysis in relation to jawbone characteristics and during early healing of implant installation. Clinical Oral Implants Research 18, 275–280 (2007).

Isidor, F. Mobility assessment with the periotest system in relation to histologic findings of oral implants. The International Journal of Oral & Maxillofacial Implants 13, 377–383 (1998).

Javed F, Romanos GE. The role of primary stability for successful immediate loading of dental implants. A literature review. J Dent 38, 612–620 (2010).

K. A. Thomas and S. Cook. An evaluation of variables influencing implant fixation by direct bone apposition. Journal of Biomedical Materials Research 19, 875–901 (1985).

Kurella A, Dahotre NB. Surface modification for bioimplants: the role of laser surface engineering. J Biomater Appl 20(1), 5–50 (2005).

Kieswetter K, Schwartz Z, Hummert TW, Cochran DL, Simpson J, Dean DD, Boyan BD. Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG-63 cells. J Biomed Mater Res 32, 55–63 (1996).
Kessler-Liechti, G., Zix, J. & Mericske-Stern, R. Stability measurements of 1-stage implants in the edentulous mandible by means of resonance frequency analysis. The International Journal of Oral & Maxillofacial Implants 23, 353–358 (2008).

Le Guehennec, L. Soueidan, A. Layrolle, P. & Amouriq, Y. Surface treatments of titanium dental implants for rapid osseointegration. Dental materials : official publication of the Academy of Dental Materials, 23, 844–854 (2007).

Laiblin C, Jaeschke G. Klinisch-chemische Untersuchungen des Knochen- und Muskelstoffwechsels unter Belastung bein Göttinger Miniaturschwein – eine experimentelle Studie (Clinical-chemical investigations of the metabolism of bone and muscle under stress in the Göttiningen miniature pig – an experimental study), Berl Münch Tierärztl Wschr 92, 124 (1979).

Meredith N, Alleyne D, Cawley P. Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis. Clinical Oral Implants Research 7, 261–267 (1996).

Meredith, N. A review of nondestructive test methods and their application to measure the stability and osseointegration of bone anchored endosseous implants. Critical Reviews in Biomedical Engineering 26, 275–291 (1998).

Mosekilde L, Kragstrup J, Richards A. Compressive strength, ash weight, and volume of vertebral trabecular bone in experimental fluorosis in pigs. Calcif Tissue Int 40, 318–322 (1987).

Muller M, Hennig FF, Hothorn T, Stangl R. Bone-implant interface shear modulus and ultimate stress in a transcortical rabbit model of open-pore Ti6Al4V implants. J Biomech 39, 2123–2132 (2006).

Martin JY, Schwartz Z, Hummert TW, Schraub DM, Simpson. Lankford, Jr. J, Dean DD, Cochran DL, Boyan BD. Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63). Journal of biomedical materials research 29, 389–401 (1995).
Navarro M., Michiardi A., Castaño O., and Planell, J.A. Biomaterials in orthopaedics. Journal of the Royal Society, Interface/the Royal Society 5, 1137–1158 (2008).

Park, J.-C., Lee, J.H., Kim, S.M., Kim, M.J. & Kim, H.-D. A comparison of implant stability quotients measured using magnetic resonance frequency analysis from two directions: prospective clinical study during the initial healing period. Clinical Oral Implants Research 21, 591–597 (2010).

Rickard Brånemark, Lena Emanuelsson, Anders Palmquist, Peter Thomsen. Bone response to laser-induced micro- and nano-size titanium
surface features. Nanomedicine: Nanotechnology, Biology, and Medicine 7, 220–227 (2011).

Rasmusson, L., Kahnberg, K.E. & Tan, A. Effects of implant design and surface on bone regeneration and implant stability: an experimental study in the dog mandible. Clinical Implant Dentistry & Related Research 3, 2–8 (2001).

Rocci, A., Martignoni, M., Burgos, P.M., Gottlow, J. & Sennerby, L. Histology of retrieved immediately and early loaded oxidized implants: lightmicroscopic observations after 5 to 9 months of loading in the posterior mandible. Clinical Implant Dentistry & Related Research 5 (Suppl.1), 88–98 (2003).

Roberts, W.E, Smith, R.K., Zilberman, Y., Mozsary, P.G., Smith, R.S. Osseous adaptation to continuous loading of rigid endosseous implants. American Journal of Orthodontics 86, 95–111 (1984).

Steinemann, S.G. Titanium–the material of choice? Periodontology 2000 17, 7–21 (1998).

Shalabi, M.M.; Gortemaker, A.; Van't Hof, M.A.; Jansen, J.A. & Creugers, N.H. Implant surface roughness and bone healing: a systematic review. Journal of dental research, 85, 496-500 (2006).

Shibli, J.A.; Grassi, S.; de Figueiredo, L.C.; Feres, M.; Marcantonio, E., Jr.; Iezzi, G. & Piattelli, A. Influence of implant surface topography on early osseointegration: a histological study in human jaws. Journal of biomedical materials research. Part B, Applied biomaterials 80, 377–385 (2007).

Soskolne, W.A.; Cohen, S.; Sennerby, L.; Wennerberg, A. & Shapira, L. The effect of titanium surface roughness on the adhesion of monocytes and their secretion of TNF-alpha and PGE2. Clinical oral implants research, 13, 86–93 (2002).

Sammons, R.L., Lumbikanonda, N., Gross, M. & Cantzler, P. Comparison of osteoblast spreading on microstructured dental implant surfaces and cell behaviour in an explant model of osseointegration. A scanning electron microscopic study. Clinical oral implants research, 16, 657–666 (2005).

Stratakis E, Ranellaa A, Farsaria M, Fotakis C. Laser-based micro/nanoengi- neering for biological applications. Prog Quantum Electron 33, 127–163 ( 2009).

Schulte, W. & Lukas, D. Periotest tomonitor osseointegration and to check the occlusion in oral implantology. The Journal of Oral Implantology 19, 23–32 (1993).

Sennerby, L. & Meredith, N. Implant stability measurements using resonance frequency analysis: biological and biomechanical aspects and clinical implications. Periodontology 2000 47, 51–66 (2008).

Sennerby, L., Thomsen, P., Ericson, L.E. A morphometric and biomechanic comparison of titanium implants inserted in rabbit cortical and cancellous bone. The International Journal of Oral & Maxillofacial Implants 7, 62–71 (1992).

Sennerby, L., Wennerberg, A, Pasop, F. A new microtopographic technique for non-invasive evaluation of the bone structure around implants. Clinical Oral Implants Research 12, 91–94 (2001).

Su, Y.-Y., Wilmes, B., Hönscheid, R. & Drescher, D. Application of a wireless resonance frequency transducer to assess primary stability of orthodontic mini-implants: an in vitro study in pig ilia. The International Journal of Oral & Maxillofacial Implants 24, 647–654 (2009).

Schimandle JH, Boden SD. Spine update. The use of animal models to study spinal fusion. Spine 19, 1998–2006 (1994).

Thompson JI, Gregson PJ, Revell PA. Analysis of push-out test data based on interfacial fracture energy. J Mater Sci Mater Med 10, 863–868 (1999).

Thorwarth M, Schultze-Mosgau S, Kessler P, Wiltfang J, Schlegel KA Bone regeneration in osseous defects using a resorbable nanoparticular hydroxyapatite. J Oral Maxillofac Surg 63, 1626–1633 (2005).

Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials 21, 1803–1810 (2000).

Wennerberg A, Hallgren C, Johansson C, Danelli S. A histomorphometric evaluation of screw-shaped implants each prepared with two surface roughnesses. Clinical Oral Implants Research 9, 11–19 (1998).

Wennerberg A, Albrektsson T, Albrektsson B, Krol JJ. Histomorphometric and removal torque study of screw-shaped titanium implants with three different surface topographies. Clinical Oral Implants Research 6, 24–30 (1996).

Wennerberg, A., and Albrektsson, T. Effects of titanium surface topography on bone integration : a systemic review. Clinical oral implants research 20 Suppl 4, 172–184 (2009).

Wennerberg, A., and Albrektsson, T. Suggested guidelines for the topographic evaluation of implant surfaces. The International Journal of Oral & Maxillofacial Implants 15, 331–344 (2000).

Zhao G, Zinger O, Schwartz Z, Wieland M, Landolt D, Boyan BD. Osteoblastlike cells are sensitive to submicron-scale surface structure. Clinical Oral Implants Research 17, 258–264 (2006).

Zhu X, Chen J, Scheideler L, Altebaeumer T, Geis-Gerstorfer J, Kern D. Cellular reactions of osteoblasts to micron- and submicron-scale porous structures of titanium surfaces. Cells Tissues Organs 178, 13–22 (2004).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-09-03起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw