進階搜尋


下載電子全文  
系統識別號 U0026-2108201316040800
論文名稱(中文) 非對稱式微反應器之混合特性及其應用於奈米合成之研究
論文名稱(英文) Mixing Performance of an Asymmetric Micro-reactor and its Applications of Nano-particle
校院名稱 成功大學
系所名稱(中) 航空太空工程學系碩博士班
系所名稱(英) Department of Aeronautics & Astronautics
學年度 101
學期 2
出版年 102
研究生(中文) 鄭俊先
研究生(英文) Chun-Hsien Cheng
學號 P46001097
學位類別 碩士
語文別 中文
論文頁數 91頁
口試委員 指導教授-王覺寬
口試委員-張克勤
口試委員-呂宗行
中文關鍵字 主動式微混合器  混合腔  激擾頻率  雙級式微反應器  奈米金合成 
英文關鍵字 Active micro-mixer  Mixing chamber  Excitation frequency  Two-stage micro-reactor  Gold nanoparticles synthesized 
學科別分類
中文摘要 本研究擬設計一種能在較廣雷諾數下(Re = 200~800)使用之曲面型主動式微反應器系統,探討外部激擾頻率對其混合特性的影響,並應用於氯金酸經抗壞血酸還原生成奈米金粒子之反應。結果顯示,本研究設計之非對稱曲面型微反應器(CWM)具備使流體在微流道中,產生混沌混合的效果,在CWM微反應器中,當Re = 2,激擾頻率f = 50 Hz條件下,流體混合效率高達95.8 ± 1.2 %;而當Re = 20時,激擾頻率f = 50 Hz條件下,流體混合效率達96.1 ± 1.1 %;在Re = 200、激擾頻率f = 70 Hz條件下,流體混合效率反而下降至85 ± 9.5 %,這是因為高雷諾數下,流體滯留在混合腔內時間縮短,造成混合效果不佳。為改善CWM在高雷諾數下的混合效率,本研究採用雙級式混合腔之設計,當採用同向雙級微反應器進行實驗時,流體在第一、二級混合腔內生成方向相同之渦流,增強流體混合性能,故在Re = 200,外部激擾頻率f = 60 Hz條件下,流體混合效率高達92.3 ± 3.2 %;若以反向雙級微反應器進行實驗,流體在第一、二級混合腔內,生成方向相反之渦流,可增強流體之多層化摺疊效應,在Re = 200、激發頻率f = 70 Hz條件下,混合效率高達97.1 ± 0.8 %,顯示雙級式微混合腔能在高雷諾數下產生良好之流體混合性能。奈米金粒子合成反應,主要探討Re、還原劑濃度與氫氧化鈉濃度對粒徑大小之影響,結果顯示,雷諾數增加,流體混合效率降低,所得到的奈米金粒子粒徑較大,Re = 200、400、600、800時,平均粒徑3.7 ± 1.4 nm、3.9 ± 1.7 nm、5.3 ± 2.0 nm、5.1 nm ± 2.3 nm;還原劑濃度增加,反應物接觸時產生較多成核現象,配合流體多層化結構,能有效降低奈米粒子粒徑,還原劑濃度10 mM、15 mM、20 mM時,平均粒徑6.6 ± 2.2 nm、5.5 ± 2.1 nm、3.7 ± 1.4 nm,還原劑20 mM為最佳反應條件,當還原劑濃度為30 mM時,流體在交會處即生成奈米粒子,造成平均粒徑增加為5.0 ± 1.7 nm。研究亦發現,當氫氧化鈉濃度增加,促使反應加劇,氫氧化鈉在64 mM、66 mM為最佳反應條件,平均粒徑3.8 ± 1.4 nm、3.7 ± 1.4 nm,當氫氧化鈉濃度68 mM、70 mM時,平均粒徑4.8 ± 1.6 nm、5.0 ± 1.5 nm,這是因為合成反應會在流體多層化現象完全發展前結束,故會生成較大之奈米粒子。本研究在Re = 200、f = 70Hz條件下,可以產生平均粒徑3.7 ± 1.4 nm之奈米金粒子,且單一微反應器的產量達每分鐘5.38毫升,符合工學上大量生產之需求。
英文摘要 This research investigates the mixing efficiency of a curved-wall micro- reactor (CWM) used in a wide Reynolds number range (i.e., Re = 200~800), under excitation frequency f = 5~200 Hz. The micro-reactor was also used for the synthesis of gold nanoparticles by the reduction process of gold chloride by ascorbic acid. Results show that the novel-designed curved-wall micro reactor could generate chaotic mixing process in the micro-channel and mixing chamber. Experimental results show that the mixing efficiency is 95.8 ± 1.2 % under Re = 2 and f = 50 Hz in CWM; Mixing efficiency increases to 96.1 ± 1.1 % when Reynolds number is further raised to 20 under f = 50 Hz. However, the mixing efficiency drop to 85 ± 9.5 % at high Reynolds number, i.e., Re = 200 due to the short mixing time at high Reynolds number. In order to improve the mixing efficiency in high Reynolds number, a two-stage design of the mixing chamber is performed. Result shows mixing efficiency is improved up to 92.3 ± 3.2 % under Re = 200, f = 60 Hz using a two-stage in-phase CWM (IP-CWM). Mixing efficiency further increases to 97.1 ± 0.8 % at two-stage out-of-phase CWM (OP-CWM) under Re = 200, f = 70 Hz, because the clockwise and the counterclockwise vortex generate in the OP-CWM’s two-stage mixing chamber, respectively. Thus, the folding effects was enhanced, so that OP-CWM owns better mixing performance under high Reynolds number (Re = 200). In gold nanoparticles synthesis reaction research, mainly focused on the influence of discusses Reynolds number, ascorbic acid concentration and NaOH concentration effects on particle size. Results showed that the mean particle size d = 3.7 ± 1.4 nm, 3.9 ± 1.7 nm, 5.3 ± 2 nm, 5.1 nm ± 2.3 nm for Re = 200, 400, 600, 800, respectively. Increase Re would lower the mixing efficiency, so the obtained gold nanoparticles size become larger; The mean particle size d = 6.3 ± 2.2 nm, 5.5 ± 2.1 nm, 3.7 ± 1.4 nm when AA = 10 mM, 15 mM, 20 mM, respectively, the optimum reaction condition is 20 mM. Increasing AA concentration, cause the nucleation number increase, and effectively reduce the nanoparticle size, as AA = 30 mM, the product particles generate at intersection of reactant, resulting in an mean particle size increased to 5.0 ± 1.7 nm. The mean particle size d = 3.8 ± 1.4 nm, 3.7 ± 1.4 nm for NaOH = 64 mM, 66 mM, which are the optimal reaction conditions, when NaOH = 68 mM, , 70 mM, d = 4.8 ± 1.6 nm, 5.0 ± 1.5 nm, it’s because the reaction end before multi-lamination fully developed, larger nanoparticles generate. In this research, the mean size of 3.7 ± 1.4 nm for gold nanoparticles achieves at OP-CWM when Re = 200, f = 70 Hz, and single micro-reactor yield of 5.38 ml per minute meet the engineering requirements on mass production.
論文目次 摘要
Abstract
誌謝
目錄 I
表目錄 IV
圖目錄 V
符號表 X
第一章 緒論 1
1-1 簡介 1
1-2 微流體混合原理(Microfluidic Mixing) 2
1-3 微混合器 3
1-3-1 被動式微混合器 4
1-3-2 主動式微混合器 9
1-4 Dean渦流現象 22
1-5 微混合器應用於奈米粒子合成 24
1-6 研究動機與目的 25
第二章 實驗設備與方法 26
2-1 微反應器之設計概念 26
2-1-1 微反應器結構 27
2-1-2 雙級式微反應器設計 28
2-1-3 微反應器作動原理 29
2-2 微反應器組裝 30
2-3 外部激擾裝置 32
2-3-1 壓電蜂鳴片封裝 33
2-4 實驗設備 34
2-4-1 波型控制 36
2-4-2 微反應器裝置 37
2-4-3 視流觀察及影像擷取裝置 38
2-4-4 穿透式電子顯微鏡 39
2-5 影像濃度校正 40
2-6 混合效率指標 43
2-7 微反應器混合特性實驗控制條件 44
2-8 奈米金粒子合成反應實驗控制條件 45
2-9 微反應器混合特性實驗步驟 46
2-10 奈米合成實驗步驟 47
第三章 微反應器混合特性與效率分析 48
3-1 微反應器之流場結構視流分析 48
3-2 外部激擾頻率在不同雷諾數下對混合特性的影響 54
3-2-1 CWM微反應器於Re = 2之混合特性 54
3-2-2 CWM微反應器於Re = 20之混合特性 57
3-2-3 CWM微反應器於Re = 200之混合特性 59
3-3 雙級式微反應器之混合特性(Re = 200) 61
3-4 微反應器混合特性結論 73
第四章 微反應器於奈米金粒子合成之應用 74
4-1 奈米粒子合成 74
4-2 雷諾數對奈米粒子合成之影響 75
4-3 還原劑濃度對奈米粒子合成之影響 77
4-4 氫氧化鈉濃度對奈米粒子合成之影響 79
4-5 奈米合成反應結論 82
第五章 結論 83
第六章 建議及未來研究方向 87
參考文獻 88
參考文獻 [1]D. Liepmann, A. P. Pisano, and B. Sage, "Microelectromechanical systems technology to deliver insulin," Diabetes Technology & Therapeutics, vol. 1, 1999.
[2]N. Y. Lee, M. Yamada, and M. Seki, "Development of a passive micromixer based on repeated fluid twisting and flattening, and its application to DNA purification," Analytical and Bioanalytical Chemistry, vol. 383, pp. 776-782, 2005.
[3]W. H. Tan, Y. Suzuki, N. Kasagi, N. Shikazono, K. Furukawa, and T. Ushida, "A Lamination Micro Mixer for μ-Immunomagnetic Cell Sorter(Bioengineering)," JSME international journal. Series C, Mechanical systems, machine elements and manufacturing, vol. 48, pp. 425-435, 2005/12/15 2005.
[4]S. Y. Yang, F. Y. Cheng, C. S. Yeh, H. Y. Lei, and G. B. Lee, "Synthesis of gold nanoparticles using a vortex-type micro-mixing system," presented at the Proceedings of the 2009 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2009.
[5]N. T. Nguyen, Micromixers fundamentals, design and fabrication: William Andrew Inc., 2008.
[6]L. Capretto, W. Cheng, M. Hill, and X. Zhang, "Micromixing Within Microfluidic Devices". vol. 304, B. Lin, Ed., ed: Springer Berlin / Heidelberg, 2011, pp. 27-68.
[7]C. Y. Lee, C. L. Chang, Y. N. Wang, and L. M. Fu, "Microfluidic Mixing: A Review," International Journal of Molecular Sciences, vol. 12, pp. 3263-3287, 2011.
[8]N. T. Nguyen and Z. Wu, "Micromixers—a review," Journal of Micromechanics and Microengineering, vol. 15, p. R1, 2005.
[9]A. A. S. Bhagat, E. T. K. Peterson, and I. Papautsky, "A passive planar micromixer with obstructions for mixing at low Reynolds numbers," Journal of Micromechanics and Microengineering, vol. 17, p. 1017, 2007.
[10]D. Gobby, P. Angeli, and A. Gavriilidis, "Mixing characteristics of T-type microfluidic mixers," Journal of Micromechanics and Microengineering, vol. 11, p. 126, 2001.
[11]A. Golia, P. K. Sahu, A. K. Sen, and P. Muthukumar, "Investigations of a micro-mixer with and wihout indentations along the mixing channel " 2011.
[12]M. Hoffmann, N. Raebiger, M. Schlueter, S. Blazy, D. Bothe, C. Stemich, and A. Warnecke, "Experimental and numerical investigations of T-shaped micromixers."
[13]N. Kockmann, C. Föll, and P. Woias, "Flow regimes and mass transfer characteristics in static micromixers," San Jose, CA, USA, 2003, pp. 319-329.
[14]S. H. Wong, M. C. L. Ward, and C. W. Wharton, "Micro T-mixer as a rapid mixing micromixer," Sensors and Actuators B: Chemical, vol. 100, pp. 359-379, 2004.
[15]M. A. Ansari and K. Y. Kim, "A numerical study of mixing in a microchannel with circular mixing chambers," AIChE Journal, vol. 55, pp. 2217-2225, 2009.
[16]Y. C. Chung, Y. L. Hsu, C. P. Jen, M. C. Lu, and Y. C. Lin, "Design of passive mixers utilizing microfluidic self-circulation in the mixing chamber," Lab on a Chip, vol. 4, pp. 70-77, 2004.
[17]J. J. Chen, W. Z. Liu, J. D. Lin, and J. W. Wu, "Analysis of filling of an oval disk-shaped chamber with microfluidic flows," Sensors and Actuators A: Physical, vol. 132, pp. 597-606, 2006.
[18]R. A. Truesdell, P. V. Vorobieff, L. A. Sklar, and A. A. Mammoli, "Mixing of a continuous flow of two fluids due to unsteady flow," Physical Review E, vol. 67, p. 066304, 2003.
[19]Y. Ma, M. Fields, C. P. Sun, F. Zhang, J. C. Liao, Y. Li, B. M. Churchill, and C. M. Ho, "Design of Microfluidic Mixer Utilizing Pressure Disturbances," in Nano/Micro Engineered and Molecular Systems, 2006. NEMS '06. 1st IEEE International Conference on, 2006, pp. 1303-1306.
[20]I. Glasgow and N. Aubry, "Enhancement of microfluidic mixing using time pulsing," Lab on a Chip, vol. 3, pp. 114-120, 2003.
[21]K. F. Lei and W. J. Li, "Microfluidic mixing by fluidic discretization," in Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05. The 13th International Conference on, 2005, pp. 1537-1540 Vol. 2.
[22]W. B. Mao and J. L. Xu, "Micromixing enhanced by pulsating flows," International Journal of Heat and Mass Transfer, vol. 52, pp. 5258-5261, 2009.
[23]K. Sugano, H. Yoshimune, A. Nakata, Y. Hirai, T. Tsuchiya, and O. Tabata, "High-speed pulsed mixing with high-frequency switching of micropump driving and its application to nanoparticle synthesis," in Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International, 2011, pp. 1773-1776.
[24]C. L. Sun and J. Y. Sie, "Active mixing in diverging microchannels," Microfluidics and Nanofluidics, vol. 8, pp. 485-495, 2010.
[25]黎康熙, "利用入口脈動流之主動式微混合器研究," 碩士論文, 航空太空工程學系, 國立成功大學, 2006.
[26]D. J. Laser and J. G. Santiago, "A review of micropumps," Journal of Micromechanics and Microengineering, vol. 14, p. R35, 2004.
[27]M. Hamadiche, J. Scott, and D. Jeandel, "Temporal stability of Jeffery–Hamel flow," Journal of Fluid Mechanics, vol. 268, pp. 71-88, 1994.
[28]K. C. Sahu and R. Govindarajan, "Stability of flow through a slowly diverging pipe," Journal of Fluid Mechanics, vol. 531, pp. 325-334, 2005.
[29]S. Y. Yang, J. L. Lin, and G. B. Lee, "A vortex-type micromixer utilizing pneumatically driven membranes," Journal of Micromechanics and Microengineering, vol. 19, p. 035020, 2009.
[30]L. S. Jang, S. H. Chao, M. R. Holl, and D. R. Meldrum, "Resonant mode-hopping micromixing," Sensors and Actuators A: Physical, vol. 138, pp. 179-186, 2007.
[31]戴巧怡, "複合型微混合器在外部激擾下之混合機制及特性," 碩士論文, 航空太空工程學系, 國立成功大學, 2012.
[32]Arjun P. Sudarsan and Victor M. Ugaz, " Fluid mixing in planar spiral microchannels," Lab Chip, vol. 6, pp. 74-82, 2005.
[33]Arjun P. Sudarsan and Victor M. Ugaz, "Multivortex micromixing," PNAS, vol. 103, no. 19, pp. 7228-7233, 2006.
[34]J. Wagner and J. M. Ko1hler, "Continuous synthesis of gold nanoparticles in a Microreactor," Nano Letters, vol. 5, no. 4, pp. 685-691, 2005.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-08-29起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-08-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw