進階搜尋


下載電子全文  
系統識別號 U0026-2108201311415700
論文名稱(中文) 探討下背痛患者軀幹旋轉的功能工作空間
論文名稱(英文) The functional workspace in the trunk circumduction for patients with low back pain
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 101
學期 2
出版年 102
研究生(中文) 鄭夙珍
研究生(英文) Su-Chun Cheng
學號 P88921160
學位類別 博士
語文別 英文
論文頁數 82頁
口試委員 口試委員-郭立杰
口試委員-蔡明俊
口試委員-吳汶蘭
口試委員-周有禮
口試委員-林克忠
口試委員-林昭宏
指導教授-蘇芳慶
口試委員-王茂駿
口試委員-林瑞模
中文關鍵字 下背痛  腰椎  軀幹活動度  功能工作空間  軀幹旋轉  觸診 
英文關鍵字 low back pain  trunk mobility  functional workspace  trunk circumduction  palpation 
學科別分類
中文摘要 下背痛是常見的關節骨骼系統不適。根據勞工局的調查,65~80%國人一輩子中至少會有一次背痛經驗,其中有高達六成的比例,會在兩年內反覆發作,有百分之二到百分之三的人,症狀會慢性化而持續達半年以上。不僅會引起生活不適,也可能造成日常生活功能降低,影響生活品質。

下背痛病理複雜且病程進展個體差異頗大,再加上影像檢查部分,病理影像和臨床症狀相關不大,使得診斷困難。從功能(function)的面向,評估下背痛患者產生的功能受限,來輔助下背痛的診斷及後續治療的預後,是個重要的議題。如此將可以提供臨床決策的執行,使患者得到最大的助益。在過去的文獻中,功能方面的評估限於質性測量量表、角度測量、肌力測試、或是日常功能動作評估,但是由於腰椎解剖型態呈現三度空間,活動複雜,造成下背動作無法完整測量。而且對受傷後腰椎的量測,增添許多困難性及不適切性,截至目前臨床上仍無一個較合適的量測,運用在此部位活動。

本研究以軀幹三度空間活動的觀念,量測軀體旋轉活動度(trunk circumduction),建立功能性工作空間(functional workspace)。並以此工作空間來評估下背痛患者的活動功能。本研究計畫主要研究內容包括:
第一部分:第三章中運用電腦輔助攝影的動態分析系統,量測下背的活動及工作空間。藉由此量測法,建立健康年輕受測者的理想工作空間,然後測試其軀幹活動的動作一致性。結果顯示軀幹旋轉的活動具有重複信度的工具。ICC值為0.90-0.96,正常化後的工作空間為第七頸椎 0.425 (0.116); 第一腰椎 0.843 (0.297); 膝蓋0.014 (0.011)。計算軀幹旋轉的最大位移量與單軸活動的位移量無明顯相關,說明這兩種活動存在不同的活動模式。本研究呈現軀幹旋轉的工作空間有高度的重複信度,可成為日後當作評估功能的工具。同時軀幹旋轉的工作空間提供單一整合值來代替角度與距離的比較,未來研究方向可使用此工作空間來評估下背痛患者或下背手術的功能。

第二部分: 因為軀幹活動的動作一致性已建立,第四章比較下背痛患者與年齡相符的健康測試者的工作空間。同時針對下背痛患者,使用背痛歐氏量表量測生活品質,並檢測下背痛患者的工作空間與背痛歐氏量表的相關性。結果:軀幹旋轉的工作空間可以區分下背痛患者與年齡相符健康受測者。下背痛患者中,脊柱滑脫患者的工作空間與背痛歐氏量表有明顯意義的相關性 (0.68-0.88)。本研究說明工作空間已建立成為有用的評估功能的工具來確定下背痛的受傷。本研究所使用的動態分析來量測軀幹活動度,預期能克服臨床上無法精準量測下背動作情形。同時藉著活動模式及工作空間也可以評估腰椎功能受損的程度。

第三部份:運用運動學分析方法研究肢體的動作前,最首要的就是了解所使用的表皮感應器(標記)與其皮下骨頭肢段間的關係。在第五章中運用傳統X光,於脊柱呈側躺姿勢時,研究骨頭標記與皮膚標記間的關係。37位下背痛患者參與此研究,五個表面標記被使用來估計棘突觸診位置。另外使用幾何數學公式計算棘突觸診位置,與對應腰椎椎體於表皮之距離差異。結果顯示骨頭標記與皮膚標記間的距離差距最大為第一腰椎,35.9mm; 最小為第四腰椎,15.1mm。不同腰椎節的解剖形狀會影響骨頭標記與皮膚標記間的距離:預測值(R2)除了第四腰椎節為0.38以外,其他腰椎節為0.66- 0.89。考慮腰椎節局部形狀,其中以棘突傾角、椎體傾角及棘突長度明顯地可預測骨頭標記與皮膚標記間的距離差距(p<0.05)。結果顯示,將表皮感應器置於棘突表面位置,與椎體中心的表面位置並不同,如此將產生活動誤差。本研究顯示以表皮標記來測量椎間活動不可行,表皮標記僅可描述肢段的活動。
英文摘要 Low back disorders are common illness in our daily life as well as in clinical practice worldwide. According to the investigations of the council of Labor Affairs of the Executive Yuan, it is acknowledged that 65-80% of the population in Taiwan could experience low back disorders at least once throughout their life time. More than 60% of patients with low back disorders would develop recurrent symptoms within two years, while for 2-3% of patients, their symptoms could last at least half a year, and they could even become disabled. Challenges have existed in making diagnoses of low back disorders from pathologic perspectives. The main reasons are the complexity of the pathology as well as the variation in patients’ symptoms. In addition, several diagnostic tools have been shown to vary in their sensitivity and specificity. The observations of the clinical symptoms may not always be related to the results of imaging tests.

Patients with low back disorders can develop self-limiting movements in their daily life activities in order to avoid discomfort in their movements. It is important to discuss the degree of self-limiting movements which occur in patients and which hopefully could be identified as the severity of back injuries. The outcomes and level of recovery could be further classified. From past studies, the functional assessments of low back disorders have been limited to several kinds: self-reported questionnaires, range of motion measurements, muscle strength testing, or time measurements of daily movements. Due to the complexity of the anatomy and the movement patterns of the lumbar spine, challenges exist in the current measurement tools.

This current study is pioneering in its use of the concept of functional workspace to evaluate the trunk mobility of patients with low back disorders, and is expected to help classify and diagnose injuries. The major work of this project includes three parts:

The first part: As reported in the chapter three, the current study used a computer-assisted motion analysis system to measure the kinematics and the functional workspace of the low back. This study established the functional workspace from healthy young subjects and identified the consistency of the trunk circumduction. The results of this study indicate that the movement of trunk circumduction measured by motion analysis instruments is a reliable tool. The intra-class correlation coefficient (ICC) value is 0.90-0.96, and the means and standard deviations of the normalized workspace are: C7 0.425 (0.116); L1 0.843 (0.297); and knee 0.014 (0.011). Little correlation between the maximal displacements of trunk circumduction and those of straight planes in the cardinal planes is shown, suggesting that different movement patterns exist. This study demonstrates the high statistical reliability of the functional workspace of trunk circumduction (FWTC), which is important for its potential development as a functional assessment tool. The FWTC provides a single integrated value to represent angular and linear measurements of different joints and planes. Future study is expected to carry out FWTC to evaluate the amount of workspace for the functional status of patients with low back injuries or patients who have undergone spinal surgery.

The second part: In the chapter four, comparisons of workspace are made between the patients with low back disorders and age-matched healthy subjects by using a computer-assisted motion analysis system. The daily quality of low back disorders was measured by the Oswestry Disability Index (ODI). The associations between functional workspace and the ODI results are discussed for the patients with low back disorders. The results indicate that the FWTC measured by motion analysis instruments could differentiate between age-matched healthy subjects and patients with low back disorders. Significant differences of workspace are shown between the healthy subjects and the patients with low back disorders. The correlations coefficients for patients with spondylolisthesis between the workspace and the ODI were high. The functional workspace has been further established as a useful tool for identifying the injuries of low back disorders by association with ODI.

The third part: before we start to use surface markers to represent the bony movements, the first step is to establish the relationships between the surface markers and the bony landmarks. We used conventional X-rays to identify the positions between the surface markers and the bony landmarks in sidelying positions of the spine. A total of 37 patients with low back disorders participated in this study and five surface markers were used to adhere the spinous processes of the lumbar spine. The geometric equation estimates the position differences compared with the position of the surface markers and projecting vertebral body centers on the surface. The distance between the markers and the projecting vertebral body centers was the greatest at L1 35.9mm and the smallest at L4 15.1 mm. The geometric characteristics of the lumbar spine affected the distance at different levels, with the R2 values from 0.66- 0.89, except for 0.38 at the L4 level. Increases in the spinous process inclination as well as vertebral inclinations, and increases in the spinous process height were factors that were found to be significantly related to the SP-PVBC distance (p<0.05). The results indicate that the motional analysis by measuring the pathway of the surface markers cannot demonstrate the intervertebral motions. Future study of motion analysis may effectively assess the movement of the selective region instead of intervertebral motions.
論文目次 中文摘要 I
ABSTRACT IV
誌謝 VIII
TABLE OF CONTENT IX
LIST OF TABLES XI
LIST OF FIGURES XII
ABBREVATIONS XIII
CHAPTER 1. INTRODUCTION 1
1.1. Research Background 1
1.2. Motivations and Clinical Relevance 3
1.3. Null Hypotheses 4
CHAPTER 2. LITERATURE REVIEW 5
2.1. Functional Anatomy of the Lumbar Spine 5
2.2. Kinematic Characteristics of the Lumbar Spine 7
2.3. Assessment of Patients with Low Back Disorders 11
2.4. Tools for Assessing the Motion of the Lumbar Spine 13
CHAPTER 3. DEVELOPING FUNCTIONAL WORKSPACE FOR THE MOVEMENT OF TRUNK CIRCUMDUCTION IN HEALTHY YOUNG SUBJECTS: A RELIABILITY STUDY 18
3.1. Introduction 18
3.2. Methods 20
3.3. Results 26
3.4. Discussion 34
3.5. Conclusions 35
CHAPTER 4. COMPARING FUNCTIONAL WORKSPACE FOR HEALTHY SUBJECTS AND PATIENTS WITH LOW BACK DISORDERS 36
4.1. Introduction 36
4.2. Method 37
4.3. Data Analysis 39
4.4. Results 39
4.5. Discussion 48
4.6. Conclusion 50
Appendix A 51
CHAPTER 5. PREDICTING THE VERTEBRAL BODY POSITIONS BASED ON PALPATED SPINOUS PROCESS POSITIONS 54
5.1. Introduction 54
5.2. Method 55
5.3. Results 63
5.4. Discussion 69
5.5. Limitations 70
5.6. Conclusion 70
Appendix B 72
CHAPTER 6. CONCLUSIONS 74
6.1. Summary of Findings 74
6.2. Future Studies 75
REFERENCES 76

參考文獻 Arrouk, K., Bouzgarrou, B., & Gogu, G. (2012). Workspace determination and representation of planar parallel manipulators in a CAD environment. In D. Pisla & M. Ceccarelli (Eds.), Mechanisms and machine science. New trends in mechanism science: analysis and design (1st ed., pp. 605): Springer.
Barrett, C. J., Singer, K. P., & Day, R. (1999). Assessment of combined movements of the lumbar spine in asymptomatic and low back pain subjects using a three-dimensional electromagnetic tracking system. Manual Therapy, 4(2), 94-99.
Bi, Z. M., & Lang, S. Y. T. (2009). Joint workspace of parallel kinematic machines. Robotics and Computer-Integrated Manufacturing, 25(1), 57-63.
Binkley, J., Stratford, P. W., & Gill, C. (1995). Interrater reliability of lumbar accessory motion mobility testing. Physical Therapy, 75(9), 786-792.
Bishop, J. B., Szpalski, M., Ananthraman, S. K., McIntyre, D. R., & Pope, M. H. (1997). Classification of low back pain from dynamic motion characteristics using an artificial neural network. Spine, 22(24), 2991-2998.
Bogduk, N. (1995). The anatomical basis for spinal pain syndromes. J Manipulative Physiol Ther, 18(9), 603-605.
Bogduk, N. (2005). clinical anatomy of the lumbar spine and sacrum (2nd ed.). London, UK: Elsevier.
Boninger, M. L., Cooper, R. A., Shimada, S. D., & Rudy, T. E. (1998). Shoulder and elbow motion during two speeds of wheelchair propulsion: a description using a local coordinate system. Spinal Cord, 36(6), 418-426.
Bontrager, K. (2002). Bontrager's Pocket Atlas-Handbook of Radiographic Positioning and Techniques (4th ed.). Phoenix, AZ: Bontrager Publishing Inc.
Broadbent, C. R., Maxwell, W. B., Ferrie, R., Wilson, D. J., Gawne-Cain, M., & Russell, R. (2000). Ability of anaesthetists to identify a marked lumbar interspace. Anaesthesia, 55(11), 1122-1126.
Chapman, J. R., Norvell, D. C., Hermsmeyer, J. T., Bransford, R. J., DeVine, J., McGirt, M. J., & Lee, M. J. (2011). Evaluating common outcomes for measuring treatment success for chronic low back pain. Spine, 36(21 Suppl), S54-68.
Cheng, S. C., Hsu, C. H., Ting, Y. T., Kuo, L. C., Lin, R. M., & Su, F. C. (2013). Developing functional workspace for the movement of trunk circumduction in healthy young subjects: a reliability study. Biomed Eng Online, 12, 4.

Cleland, J., Gillani, R., Bienen, E. J., & Sadosky, A. (2011). Assessing dimensionality and responsiveness of outcomes measures for patients with low back pain. Pain Pract, 11(1), 57-69.
Deyo, R. A. (2002). Diagnostic evaluation of LBP: reaching a specific diagnosis is often impossible. Arch Intern Med, 162(13), 1444-1447; discussion 1447-1448.
Deyo, R. A., Battie, M., Beurskens, A. J. H. M., Bombardier, C., Croft, P., Koes, B., Waddell, G. (1998). Outcome measures for low back pain research: A proposal for standardized use. Spine, 23(18), 2003-2013.
Deyo, R. A., Haselkorn, J., Hoffman, R., & Kent, D. L. (1994). Designing studies of diagnostic tests for low back pain or radiculopathy. Spine, 19(18 Suppl), 2057S-2065S.
Downey, B., Nicholas, T., & Ken, N. (2003). Can manipulative physiotherapists agree on which lumbar level to treat based on palpation? Physiotherapy, 89(2), 74-81.
Drew, B., Bhandari, M., Kulkarni, A. V., Louw, D., Reddy, K., & Dunlop, B. (2000). Reliability in grading the severity of lumbar spinal stenosis. Journal of Spinal Disorders & Techniques, 13(3), 253-258.
Ferguson, S. A., Gallagher, S., & Marras, W. S. (2003). Validity and reliability of sincerity test for dynamic trunk motions. Disabil Rehabil, 25(4-5), 236-241.
Ferguson, S. A., Marras, W. S., Burr, D. L., Woods, S., Mendel, E., & Gupta, P. (2009). Quantification of a meaningful change in low back functional impairment. Spine, 34(19), 2060-2065
Ferguson, S. A., Marras, W. S., & Gupta, P. (2000). Longitudinal quantitative measures of the natural course of low back pain recovery. Spine, 25(15), 1950-1956.
Fourney, D. R., Andersson, G., Arnold, P. M., Dettori, J., Cahana, A., Fehlings, M. G., Chapman, J. R. (2011). Chronic low back pain: a heterogeneous condition with challenges for an evidence-based approach. Spine, 36(21 Suppl), S1-9.
Furness, G., Reilly, M. P., & Kuchi, S. (2002). An evaluation of ultrasound imaging for identificationof lumbar intervertebral level. Anaesthesia, 57(3), 277-280.
Gilad, I., & Nissan, M. (1986). A study of vertebra and disc geometric relations of the human cervical and lumbar spine. Spine, 11(2), 154-157.
Gombatto, S. P., Collins, D. R., Sahrmann, S. A., Engsberg, J. R., & Van Dillen, L. R. (2007). Patterns of lumbar region movement during trunk lateral bending in 2 subgroups of people with low back pain. Physical Therapy, 87(4), 441-454.
Grotle, M., Brox, J. I., & Vollestad, N. K. (2005). Functional status and disability questionnaires: what do they assess? A systematic review of back-specific outcome questionnaires. Spine, 30(1), 130-140.
Harlick, J. C., Milosavljevic, S., & Milburn, P. D. (2007). Palpation identification of spinous processes in the lumbar spine. Manual Therapy, 12(1), 56-62.
Harvey, S. B., Smith, F. W., & Hukins, D. W. L. (1998). Measurement of lumbar spine flexion-extension using a low-field open-magnet magnetic resonance scanner. Investigative Radiology, 33(8), 439-443.
Hasenbring, M. I., & Verbunt, J. A. (2010). Fear-avoidance and endurance-related responses to pain: new models of behavior and their consequences for clinical practice. The Clinical Journal of Pain, 26(9), 747-753
Hino, H., Abumi, K., Kanayama, M., & Kaneda, K. (1999). Dynamic motion analysis of normal and unstable cervical spines using cineradiography: An in vivo study. Spine, 24(2), 163-168.
Jensen, M. C., Brant-Zawadzki, M. N., Obuchowski, N., Modic, M. T., Malkasian, D., & Ross, J. S. (1994). Magnetic resonance imaging of the lumbar spine in people without back pain. New England Journal of Medicine, 331(2), 69-73.
Kapandji. (1974). The Trunk and the Vertebral Column (2nd ed. Vol. 3). New York: Churchill Livingstone.
Kilby, J., Heneghan, N. R., & Maybury, M. (2012). Manual palpation of lumbo-pelvic landmarks: A validity study. Manual Therapy, 17(3), 259-262.
Kukke, S. N., & Triolo, R. J. (2004). The effects of trunk stimulation on bimanual seated workspace. IEEE Trans Neural Syst Rehabil Eng, 12(2), 177-185.
Lee, S.-w., Wong, K. W. N., Chan, M.-k., Yeung, H.-m., Chiu, J. L. F., & Leong, J. C. Y. (2002). Development and validation of a new technique for assessing lumbar spine motion. Spine, 27(8), E215-E220.
Lin, C. W., McAuley, J. H., Macedo, L., Barnett, D. C., Smeets, R. J., & Verbunt, J. A. (2011). Relationship between physical activity and disability in low back pain: a systematic review and meta-analysis. Pain, 152(3), 607-613.
Liu, H., Tao, H., & Luo, Z. (2009). Validation of the simplified chinese version of the oswestry disability index. Spine, 34(11), 1211-1216.
Lue, Y.-J., Hsieh, C.-L., Huang, M.-H., Lin, G.-T., & Lu, Y.-M. (2008). Development of a Chinese version of the Oswestry Disability Index Version 2.1. Spine, 33(21), 2354-2360.
Lund, T., Nydegger, T., Schlenzka, D., & Oxland, T. R. (2002). Three-dimensional motion patterns during active bending in patients with chronic low back pain. Spine, 27(17), 1865-1874.
Lyle, M. A., Manes, S., McGuinness, M., Ziaei, S., & Iversen, M. D. (2005). Relationship of physical examination findings and self-reported symptom severity and physical function in patients with degenerative lumbar conditions. Physical Therapy, 85(2), 120-133.
Maetzel, A., & Li, L. (2002). The economic burden of low back pain: a review of studies published between 1996 and 2001. Best Pract Res Clin Rheumatol, 16(1), 23-30.
Mannion, A. F., Dvorak, J., Müntener, M., & Grob, D. (2005). A prospective study of the interrelationship between subjective and objective measures of disability before and 2 months after lumbar decompression surgery for disc herniation. European Spine Journal, 14(5), 454-465.
Marras, W. S., Ferguson, S. A., Gupta, P., Bose, S., Parnianpour, M., Kim, J.-Y., & Crowell, R. R. (1999). The quantification of low back disorder using motion measures: methodology and validation. Spine, 24(20), 2091-2100.
Marras, W. S., Parnianpour, M., Ferguson, S. A., Kim, J.-Y., Crowell, R. R., Bose, S., & Simon, S. R. (1995). The classification of anatomic- and symptom-based low back disorders using motion measure models. Spine, 20(23), 2531-2546.
McGaugh, J. M., Brismee, J. M., Dedrick, G. S., Jones, E. A., & Sizer, P. S. (2007). Comparing the anatomical consistency of the posterior superior iliac spine to the iliac crest as reference landmarks for the lumbopelvic spine: a retrospective radiological study. Clinical Anatomy, 20(7), 819-825.
McGregor, A. H., McCarthy, D., Doré, C. J., & Hughes, S. P. (1997). Quantitative assessment of the motion of the lumbar spine in the low back pain population and the effect of different spinal pathologies on this motion. European Spine Journal, 6(5), 308-315.
McKenzie, A. M., & Taylor, N. F. (1997). Can physiotherapists locate lumbar spinal levels by palpation? Physiotherapy, 83(5), 235-239.
Milosavljevic, S., Pal, P., Bain, D., & Johnson, G. (2008). Kinematic and temporal interactions of the lumbar spine and hip during trunk extension in healthy male subjects. European Spine Journal, 17(1), 122-128.
Murtagh, J., & Kenna, C. (1997). Back pain &spinal manipulation (2nd ed.): Butterworth- Heinemann.
Nachemson, A. L. (1992). Newest knowledge of low back pain. A critical look. Clinical orthopaedics and related research(279), 8-20.
Nachemson, A. L., Schultz, A. B., & Berkson, M. H. (1979). Mechanical properties of human lumbar spine motion segments. Influence of age, sex, disc level, and degeneration. Spine, 4(1), 1-8.
Norkin, C., & White, D. (2009). Measurement of joint motion. A guide to goniometry (4th ed.). Philadelphia, PA: F.A. Davis Company.
O'Sullivan, P. B., Phyty, D. M., Twomey, L. T., & Allison, G. T. (1997). Evaluation of specific stabilizing exercise in the treatment of chronic low back pain with radiologic diagnosis of spondylolysis or spondylolisthesis. Spine, 22(24), 2959-2967.
Okawa, A., Shinomiya, K., Komori, H., Muneta, T., Arai, Y., & Nakai, O. (1998). Dynamic motion study of the whole lumbar spine by videofluoroscopy. Spine, 23(16), 1743-1749.
Oxland, T. R., Crisco, J. J. I., Panjabi, M. M., & Yamamoto, I. (1992). The effect of injury on rotational coupling at the lumbosacral joint: A biomechanical investigation. Spine, 17(1), 74-80.
Ozguler, A., Guéguen, A., Leclerc, A., Landre, M.-F., Piciotti, M., Le Gall, S., Boureau, F. (2002). Using the Dallas Pain Questionnaire to classify individuals with low back pain in a working population. Spine, 27(16), 1783-1789.
Panjabi, M. M. (1992). The stabilizing system of the spine. Part II. Neutral zone and instability hypothesis. Journal of spinal disorders, 5(4), 390-396; discussion 397.
Panjabi, M. M., Goel, V., Oxland, T., Takata, K., Duranceau, J., Krag, M., & Price, M. (1992). Human lumbar vertebrae. Quantitative three-dimensional anatomy. Spine, 17(3), 299-306.
Panjabi, M. M., Takata, K., Goel, V., Federico, D., Oxland, T., Duranceau, J., & Krag, M. (1991). Thoracic human vertebrae. Quantitative three-dimensional anatomy. Spine, 16(8), 888-901.
Parks, K. A., Crichton, K. S., Goldford, R. J., & McGill, S. M. (2003). A comparison of lumbar range of motion and functional ability scores in patients with low back pain: assessment for range of motion validity. Spine, 28(4), 380-384.
Parnianpour, M., Nordin, M., & Sheikhzadeh, A. (1990). The relationship of torque, velocity, and power with constant resistive load during sagittal trunk movement. Spine, 15(7), 639-643.
Pearcy, M., Portek, I., & Shepherd, J. (1985). The effect of low-back pain on lumbar spinal movements measured by three-dimensional X-ray analysis. Spine, 10(2), 150-153.
Pearcy, M. J., Portek, I., & Shepherd, J. (1984). Three-dimensional X-ray analysis of normal movement in the lumbar spine. Spine, 9(3), 294-297.
Pearcy, M. J., & Tibrewal, S. B. (1984). Axial rotation and lateral bending in the normal lumbar spine measured by three-dimensional radiography. Spine, 9(6), 582-587.
Poitras, S., Loisel, P., Prince, F., & Lemaire, J. (2000). Disability measurement in persons with back pain: A validity study of spinal range of motion and velocity. Archives of Physical Medicine and Rehabilitation, 81(10), 1394-1400.
Portney, L., & Watkins, M. (2008). Foundations of clinical research: application to practice (3rd ed.). New Jersey Prentice Hall Inc.
Post, R. B., & Leferink, V. J. (2004). Sagittal range of motion after a spinal fracture: does ROM correlate with functional outcome? Eur Spine J, 13(6), 489-494.
Powell, M. C., Szypryt, P., Wilson, M., Symonds, E. M., & Worthington, B. S. (1986). Prevalene of lumbar disc degeneration observed by magnetic resonance in symptomless women. The Lancet, 328(8520), 1366-1367.
Pysyk, C., Persaud, D., Bryson, G., & Lui, A. (2010). Ultrasound assessment of the vertebral level of the palpated intercristal (Tuffier’s) line. Canadian Journal of Anesthesia / Journal canadien d'anesthésie, 57(1), 46-49.
Reisman, D., & Scholz, J. (2006). Workspace location influences joint coordination during reaching in post-stroke hemiparesis. Experimental Brain Research, 170(2), 265-276.
Robinson, R., Robinson, H. S., Bjørke, G., & Kvale, A. (2009). Reliability and validity of a palpation technique for identifying the spinous processes of C7 and L5. Manual Therapy, 14(4), 409-414.
Ross, P. D., Huang, C., Davis, J. W., & Wasnich, R. D. (1995). Vertebral dimension measurements improve prediction of vertebral fracture incidence. Bone, 16(4, Supplement), S257-S262.
Simmonds, M. J., & Kumar, S. (1993). Health care ergonomics Part II: Location of body structures by palpation - A reliability study. International Journal of Industrial Ergonomics, 11(2), 145-151.
Snider, K. T., Snider, E. J., Degenhardt, B. F., Johnson, J. C., & Kribs, J. W. (2011). Palpatory accuracy of lumbar spinous processes using multiple bony landmarks. Journal of Manipulative and Physiological Therapeutics, 34(5), 306-313.
Spurway, A. (2012). Radiostereometric analysis origin styles: their impact on the accuracy and precision in the assessment of spinal fusion success. MASc, Dalhouse University, Nova Scotia.
Steffen, T., Rubin, R. K., Baramki, H. G., Antoniou, J., Marchesi, D., & Aebi, M. (1997). A new technique for measuring lumbar segmental motion in vivo: method, accuracy, and preliminary results. Spine, 22(2), 156-166.
Stokes, I. A., Wilder, D. G., Frymoyer, J. W., & Pope, M. H. (1981). 1980 Volvo award in clinical sciences. Assessment of patients with low-back pain by biplanar radiographic measurement of intervertebral motion. Spine, 6(3), 233-240.
Su, F.-C., Kuo, L.-C., Chiu, H.-Y., & Chen-Sea, M.-J. (2003). Video-computer quantitative evaluation of thumb function using workspace of the thumb. Journal of Biomechanics, 36(7), 937-942.
Su, F.-C., Kuo, L.-C., Chiu, H.-Y., & Hsu, H.-Y. (2002). The validity of using a video-based motion analysis system for measuring maximal area of fingertip motion and angular variation. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 216(4), 257-263.
Sullivan, M. S., Shoaf, L. D., & Riddle, D. L. (2000). The relationship of lumbar flexion to disability in patients with low back pain. Physical Therapy, 80(3), 240-250.
Taylor, J., Twomey, L., & Levander, B. (2000). Contrasts between cervical and lumbar motion segments. Critical Reviews™ in Physical and Rehabilitation Medicine, 12(4), 28.
Tibrewal, S. B., Pearcy, M. J., Portek, I., & Spivey, J. (1985). A Prospective study of lumbar spinal movements before and after discectomy using biplanar radiography: Correlation of clinical and radiographic findings. Spine, 10(5), 455-460.
Waddell, G., Somerville, D., Henderson, I., & Newton, M. (1992). Objective clinical evaluation of physical impairment in chronic low back pain. Spine, 17(6), 617-628.
Weiner, S., Brunner, F., & Nordin, M. (2012). Basic biomechanics of the musculoskeletal system (4th ed.): Lippincott Williams & Wilkins.
White AA, P. M. (1990). Clinical Biomechanics of the Spine (2nd ed. ed.). PhiiadelphiJ. JB: Lippincott.
Wiesel, S. W., Tsourmas, N., Feffer, H. L., Citrin, C. M., & Patronas, N. (1984). A study of computer-assisted tomography. I. The incidence of positive CAT scans in an asymptomatic group of patients. Spine, 9(6), 549-551.
Yoshioka, T., Tsuji, H., Hirano, N., & Sainoh, S. (1990). Motion characteristic of the normal lumbar spine in young adults: Instantaneous axis of rotation and vertebral center motion analyses. Journal of Spinal Disorders & Techniques, 3(2), 103-113.
Zhang, D., & Lei, J. (2011). Kinematic analysis of a novel 3-DOF actuation redundant parallel manipulator using artificial intelligence approach. Robotics and Computer-Integrated Manufacturing, 27(1), 157-163.
Zuberbier, O. A., Kozlowski, A. J., Hunt, D. G., Berkowitz, J., Schultz, I. Z., Crook, J. M., & Milner, R. A. (2001). Analysis of the convergent and discriminant validity of published lumbar flexion, extension, and lateral flexion scores. Spine, 26(20), E472-E478.
林茂德、王榮德. (1991). 某醫學中心背痛的經濟損失. 國立台灣大學公共衛生研究所碩士論文.
郭浩然. (2000). 職業性下背痛. [Occupational Low Back Pain]. 中華公共衛生雜誌, 19(5), 332-339.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-08-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-08-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw