進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2108201308433200
論文名稱(中文) 薄鋼胚連鑄模內部流場與熱場分析之物理模型及數值模擬研究
論文名稱(英文) Study for Flow Field and Thermal Field of Thin Slab Mold by Physical Models and Numerical Simulation
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系碩博士班
系所名稱(英) Department of Materials Science and Engineering
學年度 101
學期 2
出版年 102
研究生(中文) 洪敏雄
研究生(英文) Min-Hsiung Hung
學號 n56004389
學位類別 碩士
語文別 中文
論文頁數 79頁
口試委員 指導教授-黃文星
口試委員-陳引幹
口試委員-李世欽
中文關鍵字 薄鋼胚連鑄  數值模擬  物理模型  連鑄模 
英文關鍵字 thin slab continuous casting  physical model  mathematical model  mold 
學科別分類
中文摘要 本研究以物理模型以及數值模擬方式針對薄鋼胚連鑄模內部的流場以及熱場進行研究。在物理模型實驗中,以0.5比例建立一套水模系統並搭配3種注嘴,探討不同設計的注嘴對連鑄模內部流場的影響。為了更真實的模擬實際連鑄模,在水模外圍建立一套製冷系統,使流動的水受冷而產生凝固現象,以更真實地模擬鋼液於結晶器內的流動行為。根據實驗結果可以得知水模內部具有4個渦流區,當改變注嘴的傾斜角度以及改變注嘴的插入深度時,會造成渦流區位置的變動。在冷卻實驗中,連鑄模寬面凝固層的成長並不會對連鑄模內部四個渦流區造成巨大的變化。
在數值模擬方面,藉由數值模擬軟體ProCAST模擬物理實驗中連鑄模內部的流場和熱場變化,並將模擬結果和實驗結果做比對,證明此套模擬系統可進行流場與熱場耦合以及凝固層成長的數值模擬,再以此套模擬系統搭配實際連鑄冷卻條件,預測實際連鑄模內部的流場以及凝固層厚度。
英文摘要 In this study, a physical model and a mathematical model have been developed to analysis the flow field and thermal field in the funnel-type mold of thin slab continuous casting. In the physical model experiment, a 0.5 scale model is used to analysis the influences of flow field with three types of nozzle. In order to simulate the real situation of thin slab continuous casting, a cooling system is built around the water model to cool down the mold and grow the solidification shell in the water model. By using this cooling system, the change of flow characteristic with solidification shell can be observed. According to the experiment results, there are four swirls in the mold and the positions of the swirls change by using different nozzles. In the cooling experiment, the existence of solidification shell does not affect the formation of swirls in the mold.
In the mathematical experiment, the commercial software ProCAST is used to simulate the process of physical model experiment. The simulate results of thermal field and flow field are compared with the results of physical model and then confirm this mathematical model is reliable. Finally, this mathematical model with the actual casting cooling conditions is employed to predict the actual flow field and the solidified layer thickness inside the mold.
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
符號表 X
第一章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 3
1.2.1 薄鋼胚連鑄 3
1.2.2 物理模型試驗 5
1.2.3 數值模擬 6
1.3實驗目的 9
第二章 理論基礎 13
2.1 物理模型試驗 13
2.2 數值模型試驗 16
2.2.1 流動控制方程式 17
2.2.2 熱傳控制方程式 18
第三章 實驗方法與步驟 20
3-1 物理模型試驗 20
3.1.1實驗設備 21
3.1.2操作條件與實驗步驟 23
3-2 數值模型試驗 25
3.2.1 物理現象 25
3.2.2 模型簡化與假設 25
3.2.3 初始條件和邊界條件設定26
3-3 薄鋼胚連鑄數值模擬 27
3.3.1 物理現象 28
3.3.2 模型簡化與假設 28
3.3.3 初始條件與邊界條件 28
第四章 結果與討論 44
4-1 水模流場 44
4-2 流場數值模擬 45
4-3 冷模實驗 46
4-4 冷模實驗數值模擬 48
4-5 薄鋼胚連鑄數值模擬 50
第五章 結論 71
第六章 未來方向 73
參考文獻 74
參考文獻 (1)A. Hajari, S. H. Seyedein and M. R. Aboutalebi, “Mathematical Modeling of Transport Processes in Funnel Shaped Mold of Steel Thin Slab Continuous Caster”, Journal of Heat Transfer, 133(6), (2011), 064503-1
(2)金光, “CSP連鑄熱過程數值模擬”, 西安建築科技大學建築與土木工程系碩士論文, 2004
(3)高靜娜, “CSP薄板連鑄坯二次冷卻凝固過程的研究”, 燕山大學機械工程學系碩士論文, 2006
(4)齊靜, “連鑄坯熱力耦合有限元分析”, 燕山大學機械工程學系碩士論文, 2010
(5)劉振領,“薄板坯結晶器內鋼液流場和溫度場的數值模擬”, 河北科技大學碩士論文, 2010
(6)G. F. Zhang, H. F. Shen, L. Wang and B. C. Liu, “Simulation and Validation on Flow Field in Thin Slab Continuous Casting Mold”, Journal of Iron Steel Vanadium Titanium, 26(2), (2005), 31
(7)B. G. Thomas, L. J. Mika, and F. M. Najjar, “Simulation of fluid flow inside a continuous slab-casting machine”, Metallurgical Transactions B, 21(2), (1990), 387
(8)X. Jin, D. F. Chen, Y Zhao and M. J. Long, “Study on Mathematical Model of Temperature and Stress for Thin Slab in Continuous Casting”, Computational Intelligence and Software Engineering, (2009),1
(9)J Liu and J. X Song, “Change of Thickness for Thin Slab Caster”, 梅山科技, 1, (2007), 61
(10)H. Yu, Q. X. Chen, Y. L Kang and Y. Sun, “Microstructural research on hot strips of low carbon steel produced by a compact strip production line under different thermal histories”, Materials characterization, 54(4), (2005), 347
(11)H. Zhang, L. G. Zhao, H. B. Tao, A. Q. Liu and L. J. Li, “Numerical Simulation on Fluid Flow and Heat Transfer Behaviors in Mould of CSP Thin Slab Caster”, Iron and Steel, 41, (2006),1
(12)Z. I. Morita and T. Emi, “An Introduction to Iron and Steel Processing”, KAWASAKI STEEL 21st Century Foundation, 2003
(13)H. Nam, H. S. Park and J. K. Yoon, “Numerical analysis of fluid flow and heat transfer in the funnel type mold of a thin slab caster”, ISIJ international, 40(9), (2000), 886
(14)H. Liu, C .Yang, H. Zhang, Q. Zhai and Y. Gan, “Numerical simulation of fluid flow and thermal characteristics of thin slab in the funnel-type molds of two casters” ISIJ international, 51(3), (2011), 392
(15)蕭春木, “不鏽鋼生產技術”, 產業與技術, 第140期, (2001), 53
(16)唐方林, “薄板胚連鑄軋評述”, 中國鋼鐵研究, 第4期, (2000), 1
(17)Y. F. Chen, L. F. Zhang, S F Yang and J. S. Li, “Water Modeling of Self-Braking Submerged Entry Nozzle Used for Steel Continuous Casting Mold”, JOM, 64(9), (2012), 1080
(18)Y. J. Jeon, H. J. Sung and S. Lee, “Flow oscillations and meniscus fluctuations in a funnel-type water mold model”, Metallurgical and Materials Transactions B, 41(1), (2010), 121
(19)D. Gupta and A. K. Lahiri, “A Water Model Study of the Flow Asymmetry inside a Continuous Slab Casting Mold”, Metallurgical Transactions B, 27(5), (1996), 757
(20)B. G. Thomas, R. O'Malley, T. Shi, Y. Meng, D. Creech, and D. Stone “Validation of fluid flow and solidification simulation of a continuous thin-slab caster”, Proceedings of Conference held August, 20, (2000), 25
(21)B. G. Thomas, Q. Yuan, S Sivaramakrishnan and S. P. Vanka, “Transient fluid flow in a continuous steel-slab casting mold”, Journal of The Minerals, Metals Materials Society, 54, (2002)
(22)Q. Yuan, B. G. Thomas and S. P. Vanka “Turbulent flow and particle motion in continuous slab-casting molds”. Proceedings of the Process Technology ISSTech, (2003), 913
(23)Q. Yuan, B. G. Thomas, S. P. Vanka and S. Sivaramakrishnan, “Computational and experimental study of turbulent flow in a 0.4-scale water model of a continuous steel caster”, Metallurgical and Materials Transactions B, 35(5), (2004), 967
(24)R. D. Morales, J. Palafox-Ramos, L. Garcia-Demedices, and R. Sanchez-Perez, “A DPIV study of liquid steel flow in a wide thin slab caster using four ports submerged entry nozzles”, ISIJ international, 44(8), (2004), 1384
(25)B. Shen, H. Shen, and B. Liu, “Instability of fluid flow and level fluctuation in continuous thin slab casting mould”. ISIJ international, 47(3), (2007), 427
(26)R. Chaudhary, B. T. Rietow and B. G. Thomas, “Differences between Physical Water Models and Steel Continuous Casters: A Theoretical Evaluation”, Materials Science and Technology October, (2009), 25
(27)B. Tambunan, “Shell Thickness Prediction for Solidified Steel Slab Using Finite Element Method”, Prosiding Semiloka Teknologi Simulasi dan Komputasi serta Aplikasi 2006, (2006), 168
(28)J. K. Park, I. V. Samarasekera, B. G. Thomas and U. S. Yoon, “Thermal and mechanical behavior of copper molds during thin-slab casting (I): Plant trial and mathematical modeling”, Metallurgical and materials Transactions B, 33(3), (2002), 425
(29)J. Zhang, Y Gao, J. N. Gao, G. Wang, L. J. An and Q.Li, “Numerical Simulation of Fluid Flow in Slab Continuous Casting Mould”, 2009 International Conference on Measuring Technology and Mechatronics Automation, 2, (2009), 267
(30)B. Li and F. Tsukihashi, “Effects of electromagnetic brake on vortex flows in thin slab continuous casting mold”. ISIJ international, 46(12), (2006), 1833
(31)M. Janik and H.Dyja, “Modelling of three-dimensional temperature field inside the mould during continuous casting of steel”. Journal of materials processing technology, 157, (2004), 177
(32)J. Gao, Y. Gao, G. Wang, L. An and Q. Li, “Numerical simulation on solidification and heat-transfer of continuous casting of thin slab”, 2009 International Conference on Measuring Technology and Mechatronics Automation, 2, (2009), 279
(33)靳星,“板坯連鑄結晶器內鋼液流動行為與模擬方法研究”, 重慶大學材料科學與工程學院博士論文, 2011
(34)黃昱斌, “高溫冶煉底吹製程管口上方凝固物形成之物理模型及數值模擬研究”, 國立成功大學材料科學及工程學系博士論文, 2008
(35)王建軍, 包燕平, 曲英,“中間包冶金學”, 冶金工业出版社, 2001
(36)何永和,“連鑄模中操作條件影響鋼液清淨度的數值模擬及驗證” 國立成功大學材料科學及工程學系博士論文, 1998
(37)劉仁堯, “多晶矽鑄造凝固過程行為及微結構之數值模擬及其實驗驗證”, 國立成功大學材料科學及工程學系碩士論文, 2011
(38)黃靖崴,“多晶矽鑄造殘留應力之數值模擬及其實驗驗證”, 國立成功大學材料科學及工程學系碩士論文, 2012
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-08-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw