進階搜尋


下載電子全文  
系統識別號 U0026-2108201300045900
論文名稱(中文) 應用粒子濾波器追蹤演算法於自主車輛駕駛之研究
論文名稱(英文) Application of Particle Filter Tracking Algorithm in Autonomous Vehicle Navigation
校院名稱 成功大學
系所名稱(中) 電機工程學系碩博士班
系所名稱(英) Department of Electrical Engineering
學年度 101
學期 2
出版年 102
研究生(中文) 李堃瑞
研究生(英文) Kun-Jui Li
學號 N26004333
學位類別 碩士
語文別 英文
論文頁數 79頁
口試委員 指導教授-莊智清
口試委員-許佳興
口試委員-鄭銘揚
口試委員-壽鶴年
口試委員-余國瑞
中文關鍵字 車輛模型  車輛導航系統  粒子濾波器追蹤演算法 
英文關鍵字 Vehicle Model  Vehicle Navigation System  Particle Filter Tracking Algorithm 
學科別分類
中文摘要 本論文旨在利用車輛模型與粒子濾波器追蹤演算法發展自主式駕駛應用。一般來說,車輛導航系統包括即時環境感知,車輛定位,車輛避撞,路徑規劃以及路徑追隨控制。為了實現及開發智能自走車功能,本研究整合慣性感測元件(IMU),GNSS接收機和增量式編碼器進行載具動態估測。在演算法設計過程中,地圖輔助的路徑規劃提供一個追蹤之參考路線。
為此,開發於LabVIEW平台之人機界面(UMI)即可進行即時觀察路徑追蹤情況。在車輛預測控制的方面,本文利用粒子濾波器演算法於規劃軌跡上作路徑預測。遞迴式粒子濾波器以取樣權重估測位置並且推估轉向角響應。另外,所有應用之感測器皆整合至一個嵌入式運算平台並進行即時接收以及效能評估。搭配感測器以及嵌入式電腦平台之輕型電動車於校園內進行實驗並且路徑預測與轉向角之性能也由此驗證。
英文摘要 The thesis describes the design, implementation, and test of an autonomous vehicle navigation system using vehicle model and particle filter tracking algorithm. Typically, a vehicle navigation system comprises of real-time environment perception, vehicle localization, collision avoidance, path planning, and path following control. In order to implement the features for intelligent autonomous vehicle, a sensor suite of integrated inertial measurement unit (IMU), GNSS receiver, and incremental encoder is developed for vehicle dynamic estimation. In the design, a map-aided path planning strategy is employed to generate a reference route. To this end, a UMI (User Machine Interface) programming on LabVIEW platform is developed to facilitate the observation of a goal-oriented path tracking performance.
In the aspect of vehicle estimation control, the system utilizes particle filter algorithm to ensure that the actual trajectory follows the planned path. The recursive particle filter is able to weight the cells and response the angle as well as estimated position information. All the sensors are integrated into an embedded computer platform to assess the autonomous driving capability. The test is conducted on campus by installing the sensor suite and embedded computer platform into an electric vehicle. The trajectory tracking capability is preliminarily verified.
論文目次 摘要 I
Abstract II
Acknowledgements IV
Content VI
List of Tables IX
List of Figures X
List of Abbreviations XII
Chapter 1. Introduction 1
1.1 Motivation 1
1.2 Literature Review 4
1.3 Contributions of the Thesis 6
1.4 Organization 7
Chapter 2. Vehicle System and Modeling 8
2.1 Coordinate Systems 8
2.1.1 Earth-Fixed Axis System 9
2.1.2 Vehicle Axis System 10
2.1.3 Local ENU (East-North-Up) Coordinate System 11
2.1.4 Coordinate Transformation 12
2.2 Modeling of Vehicle Dynamics 17
2.2.1 Kinematic Model 17
2.2.2 Dynamic Model 19
2.2.3 Nonlinear Filter for Dynamic Modeling 24
Chapter 3. Particle Filter Tracking Algorithm 26
3.1 Bayes Filter 26
3.1.1 Bayes' Theorem 26
3.1.2 Markov Process Assumptions 28
3.1.3 Bayes Filter Implementation 29
3.2 Classical Particle Filter 33
3.2.1 Basic Algorithm 33
3.2.2 Particle Filter Derivation 33
3.2.3 General Particle Filter Implementation 35
3.3 Vehicle Motion and Control 37
3.3.1 Programming Flow 37
3.3.2 Map Generation 39
3.3.3 Initialization 42
3.3.4 Resampling 44
3.3.5 Estimation Result 46
Chapter 4. System Implementation and Experiments 48
4.1 System Architecture 48
4.2 Mechatronic system 49
4.2.1 Embedded Controller 50
4.2.2 I/O Modules and Sensor Modules 53
4.3 Experiment Result 56
4.4 Human Machine Interface 64
4.4.1 Position Estimation Result 64
4.4.2 IMU Information 66
4.4.3 Orientation Information 68
4.4.4 Particle Filter Estimation 69
4.4.5 Steering Control Panel 71
Chapter 5. Conclusions and Future Work 73
5.1 Summary of Results 73
5.2 Future Research 74
Reference 76
參考文獻 [1] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, "A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking," IEEE Transactions on Signal Processing, vol. 50, pp. 174-188, 2002.
[2] C. Chen, Y. Jia, J. Du, and J. Zhang, "Non-Linear Decoupling Control of Vehicle Plane Motion," IET Control Theory & Applications, vol. 6, pp. 2083-2094, 2012.
[3] N. I. Corporation. (2013). Benefits of Programming Graphically in NI LabVIEW. Available: http://www.ni.com/white-paper/14556/en/
[4] N. I. Corporation. (2013). NI LabVIEW FPGA Module. Available: http://www.ni.com/labview/fpga/
[5] N. I. Corporation. (2013). NI LabVIEW Real-Time Module. Available: http://www.ni.com/labview/realtime/
[6] S. T. Dieter Fox, Wolfram Burgard and Frank Dellaert, Particle Filters for Mobile Robot Localization: Sequential Monte Carlo Methods in Practice, 2011.
[7] K.-T. Feng, "Vehicle Lateral Control for Driver Assistance and Automated Driving," PhD Dissertation, University of California, 2000.
[8] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, "Novel approach to nonlinear/non-Gaussian Bayesian state estimation," Radar and Signal Processing, IEE Proceedings F, vol. 140, pp. 107-113, 1993.
[9] E. Guizzo, "How Google's Self-Driving Car Works," ed: IEEE Spectrum, 2011.
[10] J. Guldner, W. Sienel, T. Han-Shue, J. Ackermann, S. Patwardhan, and T. Bunte, "Robust Automatic Steering Control for Look-Down Reference Systems with Front and Rear Sensors," IEEE Transactions on Control Systems Technology, vol. 7, pp. 2-11, 1999.
[11] H.-P. Halvorsen. (2012). Introduction to LabVIEW. Available: http://home.hit.no/~hansha/documents/labview/training/Introduction%20to%20LabVIEW/Introduction%20to%20LabVIEW.pdf
[12] J. I. Hernandez and K. Chen-Yuan, "Steering control of automated vehicles using absolute positioning GPS and magnetic markers," IEEE Transactions on Vehicular Technology, vol. 52, pp. 150-161, 2003.
[13] R. N. Jazar, in Vehicle Dynamics: Theory and Application, ed: Springer US, 2008.
[14] J. Kichun, C. Keounyup, and S. Myoungho, "Interacting Multiple Model Filter-Based Sensor Fusion of GPS With In-Vehicle Sensors for Real-Time Vehicle Positioning," IEEE Transactions on Intelligent Transportation Systems, vol. 13, pp. 329-343, 2012.
[15] U. Kiencke and L. Nielsen, Automotive Control Systems: For Engine, Driveline, and Vehicle, 2nd ed.: Springer, 2005.
[16] J. Levinson and S. Thrun, "Robust Vehicle Localization in Urban Environments Using Probabilistic Maps," in 2010 IEEE International Conference on Robotics and Automation (ICRA), 2010, pp. 4372-4378.
[17] L. Li, W. Fei-Yue, and Z. Qunzhi, "Integrated Longitudinaland Lateral Tire/Road Friction Modeling and Monitoring for Vehicle Motion Control," IEEE Transactions on Intelligent Transportation Systems, vol. 7, pp. 1-19, 2006.
[18] T. Luettel, M. Himmelsbach, and H. J. Wuensche, "Autonomous Ground Vehicles - Concepts and a Path to the Future," Proceedings of the IEEE, vol. 100, pp. 1831-1839, 2012.
[19] I. Miller, M. Campbell, and D. Huttenlocher, "Map-aided Localization in Sparse Global Positioning System Environments using Vision and Particle Filtering," Journal of Field Robotics, vol. 28, pp. 619-643, 2011.
[20] W. Milliken and D. Milliken, Race Car Vehicle Dynamics: Society of Automotive Engineers Inc., 1995.
[21] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Ettinger, D. Haehnel, T. Hilden, G. Hoffmann, B. Huhnke, D. Johnston, S. Klumpp, D. Langer, A. Levandowski, J. Levinson, J. Marcil, D. Orenstein, J. Paefgen, I. Penny, A. Petrovskaya, M. Pflueger, G. Stanek, D. Stavens, A. Vogt, and S. Thrun, "Junior: The Stanford entry in the Urban Challenge," Journal of Field Robotics, vol. 25, pp. 569-597, 2008.
[22] R. Rajamani, "Lateral Vehicle Dynamics," in Vehicle Dynamics and Control, ed: Springer US, 2006, pp. 15-49.
[23] G. S. Richard Wallace, "Self-driving cars: The next revolution," 2012.
[24] B. Ristic, S. Arulampalam, and N. Gordon, Beyond the Kalman Filter: Particle Filters for Tracking Applications: Artech House, 2004.
[25] J. L. S.Thrun, and V.Verma, "Risk Sensitive Particle Filters," in the Advances in Neural Information Processing Systems 14, 2002.
[26] SAE, SAE J670 –Vehicle Dynamics Terminology. Vehicle Dynamics Standards Committee, Warrendale, PA, USA: Society of Automotive Engineers, 2008.
[27] C. Thorpe, M. Herbert, T. Kanade, and S. Shafer, "Toward autonomous driving: the CMU Navlab. I. Perception," IEEE Expert, vol. 6, pp. 31-42, 1991.
[28] C. Thorpe, M. Herbert, T. Kanade, and S. Shafter, "Toward autonomous driving: the CMU Navlab. II. Architecture and systems," IEEE Expert, vol. 6, pp. 44-52, 1991.
[29] S. Thrun. (2012). Artificial Intelligence for Robotics. Available: https://www.udacity.com/course/cs373
[30] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics: The MIT Press, 2005.
[31] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, "Robust Monte Carlo Localization for Mobile Robots," Artificial Intelligence, vol. 128, pp. 99-141, 2001.
[32] V. Verma, S. Thrun, and R. Simmons, "Variable Resolution Particle Filter," in the Proceedings of the 18th international joint conference on Artificial intelligence, Acapulco, Mexico, 2003.
[33]L. Wan, Y. C. Liu, and Y. M. Pi, "Comparing of Target-Tracking Performances of EKF, UKF and PF," Radar Science and Technology, vol. 1, p. 003, 2007.
[34]J. Y. Wong, "Handling Characteristic Of Road Vehicles," in Theory of Ground Vehicles, 4th ed: WILEY, 2008, pp. 363-418.
[35]J. Yang, E. Hou, and M. Zhou, "Front Sensor and GPS-Based Lateral Control of Automated Vehicles," IEEE Transactions on Intelligent Transportation Systems, vol. 14, pp. 146-154, 2013.
[36]莊智清, 衛星導航: 全華圖書, 2012.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-08-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-08-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw