進階搜尋


下載電子全文  
系統識別號 U0026-2108201222515100
論文名稱(中文) 以交流阻抗法評估混凝土材料之抗壓強度
論文名稱(英文) STRENGTH ESTIMATION OF CONCRETE MATERIALS USING A.C. IMPEDANCE SPECTROSCOPY
校院名稱 成功大學
系所名稱(中) 土木工程學系碩博士班
系所名稱(英) Department of Civil Engineering
學年度 100
學期 2
出版年 101
研究生(中文) 阮秋香
研究生(英文) Nguyen Thu Huong
電子信箱 thuhuong.hau@gmail.com
學號 N66997047
學位類別 碩士
語文別 英文
論文頁數 72頁
口試委員 指導教授-侯琮欽
口試委員-方一匡
口試委員-黃忠信
口試委員-王雲哲
中文關鍵字 none 
英文關鍵字 Electrochemical Impedance Spectroscopy (EIS)  Concrete  Compressive strength  Bulk resistance  Bulk resistivity  Cut-off frequency 
學科別分類
中文摘要 none
英文摘要 Currently, considerable attention has been paid to measuring and interpreting the electrical properties of cement-based structural elements such as those made of concrete. Among those, electrical measurement was initially used as an investigative technique for monitoring hydration process of Portland cement. So far, the applications have been broadly expanded as a potentially powerful method in characterizing microstructural evolution and pore structure development in cementitious materials. Hence, electrical properties measurement can provide beneficial information about the material compositions and mechanical properties of concrete. One of the most important mechanical properties of concrete is the mechanical strength. This research develops some of the current advancements in electrical property measurement of concrete materials in order to investigate the relationship between electrical resistivity of concrete and the corresponding mechanical strength. Moreover, this research aims to use electrical resistivity for prediction strength of concrete non-destructively, as a new approach.
Electrical Impedance Spectroscopy (EIS) technique was used for four concrete mixtures, with two-terminal probe method. Impedance spectra obtained by EIS of the concrete samples were investigated as function of the specimen age. Compressive strength test was performed using same cylindrical material components and at the same age of specimens. Two important parameters of the impedance spectra, bulk resistance and cut-off frequency, are found to be correlated with concrete strength gain during curing of each mixture. These relationships were also considered among different mixtures at the same age.
Base on our results, we have shown that the strength of concrete can be numerically estimated by the A.C. features of cementitious materials. The experimental data indicate that: as the strength of concrete increases, the bulk resistance/bulk resistivity increases; while the cut-off frequency decreases. Then, the equations for estimating strength of concrete were obtained. Finally, further research issues will be suggested for implementation of the proposed approach.
論文目次 Abstract I
Acknowledgement II
Contents III
List of Tables V
List of Figures VI
Chapter 1 : Introduction 1
1.1 Background 1
1.2 Objective and Scopes 4
1.3 Thesis Outline 5
Chapter 2 : Literature Review 6
2.1 Hydration of Portland Cement 6
2.2 Electrical Measurements of Cement-based Materials 8
2.3 EIS Theory: Spectra Features, Equivalent Circuit Model. 10
2.4 Resistivity and Conductivity of Cementitious Materials 17
2.5 Relationship between Compressive Strength and Microstructure of Concrete 20
2.6 Summary 21
Chapter 3 : Investigation Strategies 23
Chapter 4 : Materials and Experimental Procedures 25
4.1 Materials and Mixing Details 25
4.2 Compressive Strength Test 27
4.3 A.C Impedance Measurements 28
Chapter 5 : Results and Discussion 32
5.1 Result of Compressive Strength Tests 32
5.2 Result of EIS Tests 33
5.2.1 Overview of Impedance Response 33
5.2.2 Relationship between Bulk Resistance and Microstructure of Concrete 46
5.3 Strength Prediction of Concrete Using Bulk Resistance and Bulk Resistivity 52
5.4 Strength Prediction of Concrete Using Cut-off Frequency 55
Chapter 6 : Conclusion and Future Work 59
Reference 61
Appendix 65
參考文獻 [1] C. K. Soh and S. Bhalla, "Calibration of piezo-impedance transducers for strength prediction and damage assessment of concrete," Smart materials and structures, vol. 14, p. 671, 2005.
[2] E. Barsoukov and J. R. Macdonald, Impedance spectroscopy: theory, experiment, and applications: John Wiley and Sons, 2005.
[3] H. W. Reinhardt and C. U. Grosse, Report 31: Advanced Testing of Cement-Based Materials during Setting and Hardening-Report of RILEM Technical Committee 185-ATC vol. 31: RILEM publications, 2005.
[4] W. McCarter, S. Garvin, and N. Bouzid, "Impedance measurements on cement paste," Journal of materials science letters, vol. 7, pp. 1056-1057, 1988.
[5] B. J. Christensen, T. Coverdale, R. A. Olson, S. J. Ford, E. J. Garboczi, H. M. Jennings, and T. O. Mason, "Impedance Spectroscopy of Hydrating Cement‐Based Materials: Measurement, Interpretation, and Application," Journal of the American Ceramic Society, vol. 77, pp. 2789-2804, 1994.
[6] P. Gu, P. Xie, Y. Fu, and J. Beaudoin, "AC impedance phenomena in hydrating cement systems: frequency dispersion angle and pore size distribution," Cement and Concrete Research, vol. 24, pp. 86-88, 1994.
[7] C. Andrade, V. Blanco, A. Collazo, M. Keddam, X. Novoa, and H. Takenouti, "Cement paste hardening process studied by impedance spectroscopy," Electrochimica Acta, vol. 44, pp. 4313-4318, 1999.
[8] D. A. Whiting and M. A. Nagi, "Electrical resistivity of concrete-a literature review," R&D Serial, p. 457, 2003.
[9] F. Rajabipour, G. Sant, J. Weiss, and T. R. Board, "Development of Electrical Conductivity-Based Sensors for Health Monitoring of Concrete Materials," 2007.
[10] P. Gu, P. Xie, J. J. Beaudoin, and R. Brousseau, "AC impedance spectroscopy (I): A new equivalent circuit model for hydrated portland cement paste," Cement and Concrete Research, vol. 22, pp. 833-840, 1992.
[11] P. Gu, P. Xie, J. J. Beaudoin, and R. Brousseau, "AC impedance spectroscopy (II): Microstructural characterization of hydrating cement-silica fume systems," Cement and Concrete Research, vol. 23, pp. 157-168, 1993.
[12] P. Gu, Z. Xu, P. Xie, and J. Beaudoin, "An AC impedance spectroscopy study of micro-cracking in cement-based composites during compressive loading," Cement and Concrete Research, vol. 23, pp. 675-682, 1993.
[13] P. Gu, Z. Xu, P. Xie, and J. Beaudoin, "Application of AC impedance techniques in studies of porous cementitious materials:(I): Influence of solid phase and pore solution on high frequency resistance," Cement and Concrete Research, vol. 23, pp. 531-540, 1993.
[14] P. Xie, P. Gu, Z. Xu, and J. Beaudoin, "A rationalized ac impedence model for microstructural characterization of hydrating cement systems," Cement and Concrete Research, vol. 23, pp. 359-367, 1993.
[15] Z. Xu, P. Gu, P. Xie, and J. Beaudoin, "Application of AC impedance techniques in studies of porous cementitious materials::(II): Relationship between ACIS Behavior and the Porous Microstructure," Cement and Concrete Research, vol. 23, pp. 853-862, 1993.
[16] P. Xie, P. Gu, Y. Fu, and J. Beaudoin, "AC impedance phenomena in hydrating cement systems: detectability of the high frequency ARC," Cement and Concrete Research, vol. 24, pp. 92-94, 1994.
[17] W. McCarter and S. Garvin, "Dependence of electrical impedance of cement-based materials on their moisture condition," Journal of Physics D: Applied Physics, vol. 22, p. 1773, 1989.
[18] S. MINDESS, "Relation Between the Compressive Strength and Porosity of Autoclaved Calcium Silicate Hydrates," Journal of the American Ceramic Society, vol. 53, pp. 621-624, 1970.
[19] J. J. Beaudoin and C. MacInnis, "The effect of admixtures on the strength-porosity relationship of portland cement paste," Cement and Concrete Research, vol. 1, pp. 3-11, 1971.
[20] K. Kendall, A. Howard, J. Birchall, P. Pratt, B. Proctor, and S. Jefferis, "The Relation between Porosity, Microstructure and Strength, and the Approach to Advanced Cement-Based Materials [and Discussion]," Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 310, pp. 139-153, 1983.
[21] S. Mindess, "Relationships between strength and microstructure for cement-based materials: an overview," 1984.
[22] M. Röβler and I. Odler, "Investigations on the relationship between porosity, structure and strength of hydrated portland cement pastes I. Effect of porosity," Cement and Concrete Research, vol. 15, pp. 320-330, 1985.
[23] J. Granju and J. Grandet, "Relation between the hydration state and the compressive strength of hardened portland cement pastes," Cement and Concrete Research, vol. 19, pp. 579-585, 1989.
[24] J. Beaudoin, R. Feldman, and P. Tumidajski, "Pore structure of hardened Portland cement pastes and its influence on properties," Advanced Cement Based Materials, vol. 1, pp. 224-236, 1994.
[25] P. Chindaprasirt, C. Jaturapitakkul, and T. Sinsiri, "Effect of fly ash fineness on compressive strength and pore size of blended cement paste," Cement and Concrete Composites, vol. 27, pp. 425-428, 2005.
[26] P. E. Stutzman, "Scanning electron microscopy in concrete petrography," Materials Science of Concrete Special Volume, pp. 59-72, 2001.
[27] T. Chrisp, W. McCarter, G. Starrs, P. Basheer, and J. Blewett, "Depth-related variation in conductivity to study cover-zone concrete during wetting and drying," Cement and Concrete Composites, vol. 24, pp. 415-426, 2002.
[28] W. McCarter, M. Emerson, and H. Ezirim, "Properties of concrete in the cover zone: developments in monitoring techniques," Magazine of Concrete Research, vol. 47, 1995.
[29] W. McCarter, H. Ezirim, and M. Emerson, "Properties of concrete in the cover zone: water penetration, sorptivity and ionic ingress," Magazine of Concrete Research, vol. 48, 1996.
[30] F. Wenger and J. Galland, "Analysis of local corrosion of large metallic structures or reinforced concrete structures by electrochemical impedance spectroscopy (EIS)," Electrochimica Acta, vol. 35, pp. 1573-1578, 1990.
[31] L. Dhouibi, E. Triki, and A. Raharinaivo, "The application of electrochemical impedance spectroscopy to determine the long-term effectiveness of corrosion inhibitors for steel in concrete," Cement and Concrete Composites, vol. 24, pp. 35-43, 2002.
[32] F. Kuang, J. Zhang, C. Zou, T. Shi, Y. Wang, S. Zhang, and H. Xu, "Electrochemical Methods for Corrosion Monitoring: A Survey of Recent Patents."
[33] M. Cabeza, P. Merino, A. Miranda, X. Nóvoa, and I. Sanchez, "Impedance spectroscopy study of hardened Portland cement paste," Cement and Concrete Research, vol. 32, pp. 881-891, 2002.
[34] W. McCarter and R. Brousseau, "The AC response of hardened cement paste," Cement and Concrete Research, vol. 20, pp. 891-900, 1990.
[35] C. Scuderi, T. Mason, and H. Jennings, "Impedance spectra of hydrating cement pastes," Journal of materials science, vol. 26, pp. 349-353, 1991.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-08-28起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-08-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw