進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2108201220201300
論文名稱(中文) 室內空氣中生物氣膠之特徵與微生物活性之現場快速評估
論文名稱(英文) The Characteristics of Bioaerosols and In Situ Rapid Evaluation of Microbial Activity in Indoor Air
校院名稱 成功大學
系所名稱(中) 資源工程學系碩博士班
系所名稱(英) Department of Resources Engineering
學年度 100
學期 2
出版年 101
研究生(中文) 龔佩怡
研究生(英文) Pei-Yi kung
學號 n48931166
學位類別 博士
語文別 英文
論文頁數 106頁
口試委員 指導教授-申永輝
指導教授-溫紹炳
召集委員-葉茂榮
口試委員-廖學誠
口試委員-余光昌
中文關鍵字 室內空氣品質  生物氣膠  細菌  真菌  ATP生物冷光法 
英文關鍵字 ATP bioluminescence  Bioaerosol  Microbial activity  Indoor air quality  Environmental hygiene. 
學科別分類
中文摘要 本研究於2009年至2010年間,調查台灣南部地區包含醫療院所、學校、辦公大樓、大賣場、圖書館、車站及戲院等39處具代表性之場所,於調查前預先以簡易直讀式儀器對室內環境進行巡檢(walk through),初步了解各污染物於空間之分布狀況後,再以環保署公告之標準方法於巡檢出高值區域或有特殊意義之位置進行24小時長時間定點檢測。
結果顯示第一類場所中CO2濃度介於438-1527ppm(法規建議值為600ppm),超標比例61.1%;CO濃度介於0.55-2.14ppm(法規建議值為2ppm),超標比例11.1%;O3濃度介於0.005-0.072ppm(法規建議值為0.03ppm),超標比例27.8%;PM10濃度介於22-116ppm(法規建議值為60ppm),超標比例44.4%;TVOC濃度介於0.32-4.00ppm(法規建議值為3ppm) ,超標比例16.67%;總真菌數(Total Fungi Counts, TFC)介於62-TNTC CFU/m3(法規建議值為1000CFU/m3),超標比例33.3%;總細菌數(Total Bacteria Counts, TBC)介於196-4875CFU/m3(法規建議值為500CFU/m3),超標比例83.3%。第二類場所之CO2濃度介於488-1183ppm (法規建議值為1000ppm),超標比例9.5%;TVOC濃度介於ND-5.6ppm(法規建議值為3ppm),超標比例9.5%;TFC介於107-4500CFU/m3(法規建議值為1000CFU/m3),超標比例19.1%;TBC介於178-4125CFU/m3(法規建議值為1000CFU/m3),超標比例47.6%。其他HCHO及PM2.5在各類場所中皆符合建議值。
將CO2濃度與TBC進行相關性統計分析,結果顯示相關係數r=0.44,而針對醫療院所之分項統計相關係數r=0.55,皆有中度正相關的表現,由於CO2為人體呼吸作用之代謝產物,因此,可間接說明室內活動人數與細菌數之關聯性。另針對單一醫療院所進行生物氣膠調查,發現室內環境經由適當的清潔消毒可有效降低空氣中TBC,過程中TFC反而有驟增的現象,研判係受到沙塵暴事件及醫院旁農地土壤翻作之影響,經以二氧化氯消毒劑對真菌數較高區域進行投藥後即可獲得明顯改善。另針對高濃度超標場所外氣之真菌樣品進行優勢菌種鑑定,獲得三株絲狀真菌之菌種學名分別為CladosporiumPerangustum、Cladosporiumtenuissimum及Fusariumincarnatum。在台灣,最主要之室內空氣品質汙染問題為CO2、TBC及TFC。

ATP生物冷光技術(ATP bioluminescence technique)能快速偵測微生物活性,較一般傳統微生物分析培養方式來獲取微生物之基本資訊更具有操作簡便、節省成本且無須冗長的培養時間等優點,多年來廣泛被應用在食品、環境、醫療及公衛生等領域。本研究將生物冷光技術應用於偵測空氣中微生物活性,根據場所特性規劃空間偵測點位,再將偵測之微生物活性(相對光量,RLU)藉由繪圖軟體(SURFER 9.0)予圖形化處理,即可呈現微生物活性之分布狀況,經比對偵測場所之空間規劃與擺設狀況,發現微生物活性旺盛區域除了與活動範圍之人數多寡有關外,也涵蓋了室內空氣流動方向、室內植栽、垃圾桶、鞋櫃及候車區座位的陳設等區域;另針對空氣中真菌數超標之醫院,進行消毒劑噴灑前後之殺菌效率測試,也可在短時間內獲知空間之殺菌率,俾便提供公共場所進行空間清潔消毒時,規劃藥劑用量、施放位置及施放時間頻率之參考;本研究偵測空氣中微生物活性時,亦對其他污染物(CO2、CO、O3、PM10、PM2.5、HCHO、TVOC、Temp及RH)進行同步偵測,經相關係數矩陣的彙整,可明顯發現不同之室內環境與場所,各污染物之可能來源與彼此之相關特性亦不盡相同;於現場進行空氣中微生物活性與空氣中總細菌數同步採樣,並將分析結果進行比對,發現即便兩種方法之分析原理與所提供之微生物資訊不同,相關係數(r=0.251)仍有低度正相關之表現,代表現階段掌握之資訊不適於藉由微生物活性指標來推估細菌菌落數,儘管如此,生物冷光技術測得之微生物活性所呈現出之相對意義,仍可提供作為空間微生物密集程度之判斷依據。
空氣中微生物活性偵測技術,數分鐘內即可獲得空氣中微生物活性資訊,無需數日之培養過程,操作簡便、靈敏度高,在短時間內即可得到檢測結果,可提供場所進行篩選調查及消毒改善之依據,因此具有其他微生物檢測方法無可比擬的便捷優勢。
英文摘要 This study investigated indoor air quality (IAQ) at 39 public sites in southern Taiwan including hospitals, schools, office buildings, hypermarkets, libraries, railway stations, theaters, etc. Indoor air quality was preliminarily assessed using handy digital apparatus. Items detected include carbon dioxide (CO2), carbon monoxide (CO), formaldehyde (HCHO), total volatile organic compounds (TVOCs), total bacteria counts (TBC), total fungi counts (TFC), PM10, PM2.5, ozone (O3) and temperature. Based on the results of walk-through detection, the spatial distribution of indoor air contaminants was further measured over a 24 hour period using the EPA standard method. Major indoor air pollutants were found to include CO2, TBC, and TFC. The measured CO2 concentrations ranged between 438 and 1527 ppm, and only 38.9% of them met the Taiwan EPA suggested threshold of 600 ppm. In the schools and hospitals (Category 1), the measured TFC and TBC concentrations ranged from 62 to TNTC CFU/m3 and from 196 to 4875 CFU/m3, respectively. 33% TFC and 83% TBC concentrations exceeded the suggested threshold, and CO2 concentrations were moderately correlated with TBC levels. In a case study of hospital bioaerosols, high TBC and TFC levels were effectively lowered through disinfectant housekeeping as well as ClO2 spray. Three filamentous fungus genera were identified as Cladosporium perangustum, Cladosporium tenuissimum, and Fusarium incarnatum from outdoor samples with high TFC concentrations.
An ATP bioluminescence method was developed for detecting microbial activity in indoor air. This method was compared with the traditional method of collection, culture and count of CFUs. The comparison showed that ATP bioluminescence, expressed as RLUs, was moderately correlated with the entire set of CFU counts (r=0.607), and that correlation improved to r=0.963 (p value< 0.001) when outlying CFU counts were removed from the calculation. The ATP bioluminescence method was applied at four different sites; a hospital Chinese medicine diagnostic room, a library, a government office, and a railway station lobby. Results showed that microbial activity was far higher in the railway station lobby than at the other three sites and this was seen as a result of the higher volume and density of people in this space. At all four sites, higher microbial activity was linked to indoor plants, garbage cans, shoe racks, and furnished waiting areas. PCA of the data showed that microbial activity in the Chinese medicine diagnostic room was closely related to room temperature and humidity and hence lowering the room humidity can reduce the microbial activity potential here. At all four sites, no correlation was identified between microbial activity and airborne pollutants. The ATP bioluminescence method was applied for the rapid evaluation of room disinfection using chloride dioxide and results showed that twenty minutes after spraying with 100 ppm ClO2, microbial activity was reduced to 38.7% of its original level. ATP bioluminescence is simpler, easier to operate, and more cost-effective than the conventional microbial culture method for evaluating microbial load. The results obtained in this research confirm that the proposed ATP bioluminescence technique is capable of instantaneously detecting microbial activity in an indoor environment. Moreover, the results can be implemented for on-line evaluation of room disinfection efficiency.
論文目次 摘要 I
Abstract IV
Table of content VIII
Table index X
Figure index XI
Chapter 1 Introduction 1
1.1 Preface 1
1.2 Objective 4
1.3 Research framework 5
Chapter 2 Paper review 7
2.1 Characteristics of indoor air pollutant 7
2.2 IAQ factors and the effects on human health 9
2.2.1 Carbon dioxide(CO2): 9
2.2.2 Organic pollutants(HCHO、TVOCs): 11
2.2.3 Biological pollutants 13
2.3 The source of indoor air pollution 13
2.4 The transmission pathway of indoor air pollutants 16
2.5 Status of the development of international and domestic IAQ control 18
2.5.1 Status of the development of international IAQ control [,] 18
2.5.1 Status of the development of domestic IAQ control 25
Chapter 3 Methodology and Instruments 28
3.1 Principles of measurement point setup 28
3.2 Analysis item and method 31
3.3 Direct detection apparatus 43
3.4 Data quality assurance goals 48
3.4.1 Workflow 48
3.4.2 Proper nouns 49
3.4.3 The project quality goal 50
Chapter 4 In Situ Rapid Evaluation of Microbial Activity in Indoor Bioaerosols 52
4.1 Preface 52
4.2 Methodology 54
4.2.1 The analysis method of bacteria count in indoor air 57
4.2.2 4.2.1 The analysis method of fungi count in indoor air 60
4.3 Reagent, material, and instrument 62
4.3.1 ATP Bioluminescence 62
4.3.2 Total Bacteria Counts (TBC) 63
4.3.3 Total Fungi Counts (TFC) 64
4.4 Results and discussions 66
4.4.1 Chinese medicine diagnostic room 66
4.4.2 Library 69
4.4.3 Government office 71
4.4.4 Railway station lobby 74
4.4.5 Comparison of indoor air microbial activity and total microbial count 76
4.4.6 ATP bioluminescence as a tool for monitoring disinfection efficiency 79
4.5 Conclusion 81
Chapter 5 The characteristics of bioaerosols in indoor air 83
5.1 Preface 83
5.2 Methodology 85
5.3 Result and discussions 85
5.3.1 Measurements of indoor air quality by using standard method 86
5.3.2 Correlationship between indoor bioaerosols and particulate matters 89
5.3.3 Correlationship between indoor bioaerosols and CO2 90
5.3.4 Seasonal variability of bioaerosols 91
5.4 Conclusions and suggestions 100
Reference 102

參考文獻 蘇慧貞、郭浩然、龍世俊、林傳堯,大氣環境中一般空氣污染物與生物性氣膠健康影響評估,九十四年度 行政院環保署專題委託研究計畫,EPA-94-Fall-03-A208。
九十四年度 行政院環保署專題委託研究計畫大氣環境中一般空氣污染物與生物性氣膠健康影響評估EPA-94-Fall-03-A208。
邱玲萱,” 醫療院所室內空氣品質特徵研究”,碩士論文,國立高雄第一科技大學環境與安全衛生工程系,(2009)。
張神鳳,”公共場所室內空氣品質調查與分析-以醫療院所為例”,碩士論文,崑山科技大學環境工程研究所,(2010)。
GRIFFITHS MANSEL. W., THE Role of ATP Bioluminescence in the Food Industry :New Light on Old Problems, food technology, june, 1996.
C. J. Griffith, R.A. Cooper, J. Gilmore†, C. Davies and M. Lewis., An evaluation of hospital cleaning regimes and Standards, Journal of Hospital Infection (2000) 45: 19-28.
Hasan Aycicek_, Utku Oguz, Koray Karci., Comparison of results of ATP bioluminescence and traditional hygiene swabbing methods for the determination of surface cleanliness at a hospital kitchen, Int. J. Hyg. Environ.-Health 209 (2006) 203-206.
Griffith, C. J.;Cooper, R. A.;Gilmore, J.;Davies, C.;Lewis, M., An evaluation of hospital cleaning regimes and standards, Journal of Hospital InfectionVolume: 45, Issue: 1, May, 2000, pp. 19-28.
Cooper, Rose A.; Griffith, Chris J.; Malik, Rifhat E.; Obee, Peter; Looker, Nick., Monitoring the effectiveness of cleaning in four British hospitals, AJIC: American Journal of Infection Contro Volume: 35, Issue: 5, June, 2007, pp. 338-341.
Niza-Ribeiro João, Louzã Armando C, Santos Paula, Lima Madalena. Monitoring the microbiological quality of raw milk through the use of an ATP bioluminescence method, Food Control Volume: 11, Issue: 3, June, 2000, pp. 209-216.
Lehto, Marja; Kuisma, Risto; Määttä, Jenni; Kymäläinen, Hanna-Riitta; et. al., Hygienic level and surface contamination in fresh-cut vegetable production plants, Food Control Volume: 22, Issue: 3-4, March - April, 2011, pp. 469-475.
Delahaye, E.; Welté, B.; Levi, Y.; Leblon, G.; Montiel, A., An ATP-based method for monitoring the microbiological drinking water quality in a distribution network, Water Research Volume: 37, Issue: 15, September, 2003, pp. 3689-3 696.
Patrícia Dolabela Costa, Nélio José de Andrade, Frederico José Vieira Passos, ebastião César Cardoso Brandão and Carolina Gonçalves Freire Rodrigue., ATP - Bioluminescence as a technique to evaluate the microbiological quality of water in food industry, BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY, Volume:47, Issue: 3, Pages: 399-405.
Horiuchi, J.-I.; Ebie, K.; Tada, K.; Kobayashi, M.; Kanno, T., Simplified method for estimation of microbial activity in compost by ATP analysis, Bioresource Technology Volume: 86, Issue: 1, January, 2003, pp. 95-98.
Tiquia, Sonia M.; Wan, Judy H.C.; Tam, Nora F.Y., Dynamics of yard trimmings composting as determined by dehydrogenase activity, ATP content, arginine ammonification, and nitrification potential, Process Biochemistry Volume: 37, Issue: 10, May, 2002, pp. 1057 - 1065.
Kim, Tae-Jong; Li, Ming; Meng, Lingzhu; Kwon, Hyung-Jin; Suh, Joo-Won., ATP treatment improves the microbial ecology in soil, Journal of Biotechnology Volume: 136, Supplement, October, 2008, pp. S264.
Contin, M.; Todd, A.; Brookes, P.C., The ATP concentration in the soil microbial biomass, Soil Biology and Biochemistry Volume: 33, Issue: 4-5, April 1, 2001, pp. 701-704.
Contin, M.; Corcimaru, S.; De Nobili, M.; Brookes, P.C., Temperature changes and the ATP concentration of the soil microbial biomass, Soil Biology and Biochemistry Volume: 32, Issue: 8-9, August 1, 2000, pp. 1219-1225.
行政院環保署,室內空氣中總細菌數檢測方法NIEA E301.11C,2007.04.
麥成瑋,中醫醫療院所室內空氣品質改善研究,國立台北科技大學,環境工程與管理碩士論文,2009.07。
S.C. Lee, M. Chang, Indoor and outdoor air quality investigation at schools in Hong Kong. CHEMOSPHERE. 41. (2000) 109-113.
馮福民、孫淑豐,醫院空氣中微生物三種檢測方法的比較,實用預防醫學2000年2月第七卷第一期。(Practical Preventive Medicine, Feb, 2000, Vol. 7, No 1.)
行政院勞工委員會勞工安全衛生研究所,高濃度生物氣膠採樣技術之評估(Evaluation of Sampling Technique for High-Concentration Bioaerosols),初版,1996.10。
. 陳宇信,活性生物氣膠採樣器採樣特性評估(The Characteristic Evaluations of Air Samplers for Collecting Viable Bioaerosols),國立成功大學環境醫學研究所,1997,04。
馮文如、徐巧藝、劉世強、龔玉姣,液體空氣微生物採樣法與固體採樣法效果初步分析,疾病預防控制論著(Journal of Tropical Medicine) Vol.7 No.9 Sep. 2007
Ching-Shan Hsu, Da-Ji Huang and Ming-Chun Lu. Improvement of the air quality in student health centers with chlorine dioxide. International Journal of Environmental Health Research.Vol.20, NO. 2, April 2010, 115-127.
賴耿陽,室內空氣汙染,復文書局,台南,1994,初版。
王昭俊、 越加寧、 劉京,室內空氣環境,化學工業出版社,2006,1版。
Xinhua Wang, Xinhui Bi, Duohong Chen, Guoying Sheng, Jiamo Fu., Hospital indoor respirable particles and carbonaceous composition, Building and Environment 41 (2006) 992-1000.
Wu Pei-Chih, Su Huey-JenU, Lin Chia-Yin, Characteristics of indoor and outdoor airborne fungi atsuburban and urban homes in two seasons, The Science of the Total Environment 253 _2000. 111]118.
Ji-Hyub Lee, Wan-Kuen Jo., Characteristics of indoor and outdoor bioaerosols at Korean high-rise apartment buildings, Environmental Research, 101 (2006) 11-17.
Huey-Jen Su, Pei-Chih Wu,1 Hsiu-Ling Chen, Fang-Chun Lee, and Li-Ling Lin, Exposure Assessment of Indoor Allergens, Endotoxin, and AirborneFungi for Homes in Southern Taiwan, Environmental Research Section A 85, 135-144 (2001)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw