進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2108201212422800
論文名稱(中文) 臺灣北部金瓜石金銅礦床長仁一坑礦山排水沉澱物之礦物學研究
論文名稱(英文) Mineralogy of mine-drainage precipitates in the Changjen first mine tunnel, Chinkuashih gold-copper deposits, northern Taiwan
校院名稱 成功大學
系所名稱(中) 地球科學系碩博士班
系所名稱(英) Department of Earth Sciences
學年度 100
學期 2
出版年 101
研究生(中文) 林家宇
研究生(英文) Chia-Yu Lin
學號 L46991037
學位類別 碩士
語文別 中文
論文頁數 126頁
口試委員 指導教授-江威德
口試委員-蕭炎宏
口試委員-楊懷仁
中文關鍵字 金瓜石  礦山排水  坑道沉澱物  重金屬   
英文關鍵字 Chinkuashih  mine drainage  tunnel precipitates  heavy metals  arsenic 
學科別分類
中文摘要 硫化物礦石易受經化學風化作用釋放出重金屬和氫離子,造成礦山排水酸化及富含重金屬,進而污染生態環境。臺灣北部金瓜石黃金瀑布及其下游濂洞溪和濂洞灣即為典型受酸性礦山排水污染之地區,其河床大量氫氧氧化鐵沉澱物具有顯著砷、硫及重金屬含量,此引起本研究調查當地礦坑坑道排水及其沉澱物特性之興趣,此等資料有助於增進瞭解礦山排水特定污染元素之可能來源或中間產物。金瓜石長仁一坑坑道之現地調查顯示特定區段具有多種鐘乳石狀及岩壁殼層狀礦山排水沉澱物,本研究利用X光粉末繞射儀(XRD)、掃瞄式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、水質分析儀和感應耦合電漿發射光譜儀分析該等材料,以瞭解沉澱物礦物學和水樣化學特性,並探討其間之關係。
長仁坑道內鐘乳石狀沉澱物有暗紅色、橘紅色和黑皮黃心等種類,XRD、SEM、TEM和溶樣成份分析顯示暗紅色鐘乳石為水鐵礦及針鐵礦,橘紅色鐘乳石由針鐵礦和As2O5濃度達9.5 wt.%之四方硫酸纖鐵礦(schwertmannite)所組成,黑皮黃心鐘乳石則由黃色二線水鐵礦(2-line ferrihydrite)和黑色水鈉錳礦(birnessite,但層間離子以鋇及鉀為主)。岩壁殼層狀沉澱物包括針鐵礦、藍砷銅礦(tyrolite),斜方礬石(felsobanyaite)及黃鉀鐵礬(jarosite),這些沉澱物大多結晶度甚差,成份上也顯未具理想化學計量,多數含有或吸附有顯著含量之磷、砷、錳、鋅、銅、鉛、銻、錫、鉻、鎳、鋇或鋁,甚至以其為主要組成,例如斜方礬石和藍砷銅礦即分別含有近9 wt.%和15 wt.%之As2O5。伴隨沉澱物之水樣pH值在3.81~6.95之間,PHREEQC水樣飽和指數(saturation index)計算顯示伴隨斜方礬石之水樣飽和指數為正值,其餘水樣相對沉澱礦物之飽和指數均為負值,雖或可能反映水樣化學之改變,但亦可能模擬計算未能考慮微生物效應和礦物化學計量變化之影響。
本研究所發現之坑道排水沉澱物顯見較一般酸性礦山排水種類複雜多樣,成份變化相對較大,反映局部岩性變化影響不同來源水體之特性,而這些低結晶度沉澱物為砷及重金屬元素之中間宿主,特定水化學條件之改變即可能使之溶解,釋出污染物質,增加進入地表AMD或溪流之機會。
英文摘要 Chemical weathering of sulfide-bearing ore rocks releases abundant heavy metals and hydrogen ions, and can make mine drainage highly acidified and enriched in heavy metals. Such an acid mine drainage (AMD) is often a threat to the environment. Golden Falls and its downstream Lian-Dong Creek and Lian-Don Bay are a typical example of AMD contamination in the abandoned Chinkuashih Au-Cu deposits, northern Taiwan. The riverbed is covered with abundant iron oxyhydroxides having significant arsenic, sulfur, and heavy-metal contents. This study was deeply inspired by the example. The aims were to investigate the drainage characteristics and precipitate mineralogy of the Changjen first mine tunnel in Chinkuashih and help understanding possible sources or transitional precipitates of contaminants for AMD. Stalactic and encrusting precipitates of a number of minerals and associated waters were collected from the tunnel and analyzed by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), photometry, and inductively coupled plasma emission spectrometry (ICP-OES).
The XRD, SEM, and TEM results and compositions of dissolved solids indicated that crimson stalactites consisted of 6-line ferrihydrite and goethite, reddish orange stalactites were composed of goethite and schwertmannite with up to 9.5 wt.% As2O5, and black-skinned stalactites comprised birnessite with interlayer cations dominated by Ba and K, and a yellow body of 2-line ferrihydrite. The tunnel walls at various sites were encrusted by goethite, tyrolite, felsobanyaite, and jarosite precipitates. Most of the precipitates were very poorly crystalline and had non-stoichiometic compositions containing P, As, Mn, Zn, Cu, Pb, Sb, Sn, Cr, Ni, Ba, or Al. Some of the toxic elements were the main constituents of the precipitates, e.g., up to ca. 9 and 15 wt.% of As2O5 in the felsobanyaite and tyrolite, respectively. The waters associated with the precipitates had pH of 3.81~6.95. Geochemical modeling with PHREEQC suggested that the saturation index with respect to felsobanyaite was positive in the corresponding water whereas the other waters were all undersaturated with respect to their coexisting minerals, possibly due to variations in water chemistry with time and/or limited thermodynamic database that are currently insufficient for consideration of the variable microbial effects and mineral stoichiometry.
The number of types and the compositional ranges of the identified precipitates were apparently greater than those found in common AMD sites but rather distinct, implying that the mine drainages were strongly influenced by local changes in lithology. The poorly crystalline precipitates can be regarded as a metastable host of arsenic and heavy metals. They can be dissolved upon subtle changes of chemical environments, releasing potentially toxic contaminants into the surface AMD and streamwaters.
論文目次 摘要…………………………………………………………………………………….………I
Abstract…………………………………………………………………………………….…III
誌謝……………………………………………………………………………………………V
目錄…………………………………………………………………………………………..VI
表目錄………………………………………………………………………………………..IX
圖目錄…………………………………………………………………………………………X
第一章:緒論………………………………………………………………………………...…1
1.1研究目的………………………………………………………………………….…1
1.2研究區域……………………………………………………………………….……3
第二章:研究方法……………………………………………………………………………...7
2.1長仁一坑坑道採樣圖……………………………………………………………….7
2.2野外樣品採集………………………………………………………………….……9
2.3實驗室分析…………………………………………………………………...……12
2.3.1水樣分析…………………………………………………………………..12
2.3.2飽和指數計算……………………………………………………………..13
2.3.3沉澱物X光繞射及電子顯微分析………………………………………..15
2.3.4沉澱物溶樣成份分析……………………………………………………..17
第三章:結果…………………………………………………………………………….……22
3.1沉澱物礦物學特性…………………………………………………………...……22
3.1.1鐘乳石狀沉澱物…………………………………………………………..23
3.1.1.1橘紅色鐘乳石狀沉澱物……………………………………….…23
3.1.1.2暗紅色鐘乳石狀沉澱物……………………………………….…30
3.1.1.3黑皮黃心鐘乳石狀沉澱物………………………………….……39
3.1.2薄殼層狀沉澱物…………………………………………………………..52
3.1.2.1米黃色薄殼層狀沉澱物……………………………………….....52
3.1.2.2暗紅色薄殼層狀沉澱物………………………………………….56
3.1.2.3米白色薄殼層狀沉澱物………………………………………….60
3.1.2.4藍綠色薄殼層狀沉澱物………………………………………….65
3.2長仁一坑之水化學分析結果………………………………………………...……71
第四章:討論………………………………………………………………………………….75
4.1沉澱物之形成條件及特性………………………………………………………...76
4.1.1四方硫酸纖鐵礦…………………………………………………………..77
4.1.2六線水鐵礦及二線水鐵礦………………………………………………..79
4.1.3水鈉錳礦…………………………………………………………………..81
4.1.4黃鉀鐵礬…………………………………………………………………..83
4.1.5針鐵礦……………………………………………………………………..84
4.1.6斜方礬石…………………………………………………………………..86
4.1.7藍砷銅礦…………………………………………………………………..88
4.2伴隨沉澱物水樣之特色…………………………………………………………...94
4.3生物作用對於沉澱物的影響……………………………………………………...96
4.4水樣飽和指數計算結果與沉澱物之關係………………………………………...99
第五章:結論………………………………………………………………………………...100
參考文獻…………………………………………………………………………………….102
附錄一:橘紅色鐘乳石狀沉澱物XRD鑑定結果………………………………………….110
附錄二: 暗紅色鐘乳石狀沉澱物XRD鑑定結果………………………………………...112
附錄三:黑皮黃心鐘乳石狀沉澱物之黃心部分XRD鑑定結果………………………….116
附錄四:黑皮黃心鐘乳石狀沉澱物之黑皮部分 XRD鑑定結果…………………………117
附錄五: 米黃色薄殼層狀沉澱物XRD 鑑定結果………………………………………..118
附錄六:暗紅色薄殼層狀沉澱物 XRD鑑定結果…………………………………………121
附錄七:米白色薄殼層狀沉澱物XRD鑑定結果………………………………………….123
附錄八:藍綠色薄殼層狀沉澱物XRD鑑定結果………………………………………….124
參考文獻 Adams, L. F., and Ghiorse, W. C. (1987). Characterization of Extracellular Mn-2+-Oxidizing Activity and Isolation of an Mn-2+-Oxidizing Protein from Leptothrix-Discophora Ss-1. Journal of Bacteriology, 169(3), 1279-1285.
Alpers, C. N., Nordstrom, D. K., and Ball, J. W., (1989). Solubility product of jarosite from acid mine water at Iron Mountain, California, U.S.A.: Sciences Geologiques, v. 42, p. 281-298.
Baas Becking, L. G. M., Kaplan, I. R., and Moore, D. (1960). Limits of the natural environment in terms of pH and oxidation-reduction potentials. The Journal of Geology, 68(3), 243-284.
Basciano L C, and Peterson R C(2007). Jarosite - hydronium jarosite solid solution series with full iron occupancy: Mineralogy and crystal chemistry. American Mineralogist, 92, 1464-1473
Bigham, J. M., Carlson, L., and Murad, E. (1994). Schwertmannite, a New Iron Oxyhydroxysulphate from Pyhasalmi, Finland, and Other Localities. Mineralogical Magazine, 58(393), 641-648.
Bigham, J. M., Schwertmann, U., and Carlson, L. (1992). Mineralogy of precipitates formed by the biogeochemical oxida t ion of Fe(II) in mine drainage. In HGW Skinner and RW Fitzpatrick, Eds., Biomineralization Processes of Iron and Manganese—Modern and Ancient Environments, 21, 219–232.
Bigham, J. M., Schwertmann, U., Carlson, L., and Murad, E. (1990). A Poorly Crystallized Oxyhydroxysulfate of Iron Formed by Bacterial Oxidation of Fe(Ii) in Acid-Mine Waters. Geochimica Et Cosmochimica Acta, 54(10), 2743-2758.
Bigham, J. M., Schwertmann, U., and Pfab, G. (1996). Influence of pH on mineral speciation in a bioreactor simulating acid mine drainage. Applied Geochemistry, 11(6), 845-849.
Bigham, J. M., Schwertmann, U., Traina, S. J., Winland, R. L., and Wolf, M. (1996). Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochimica Et Cosmochimica Acta, 60(12), 2111-2121.
Brown, D. A., Sherriff, B. L., Sawicki, J. A., and Sparling, R. (1999). Precipitation of iron minerals by a natural microbial consortium. Geochimica Et Cosmochimica Acta, 63(15), 2163-2169.
Calyton, T. (1980). Hydrobasaluminite and basaluminite from Chickerell. Dorst. Mineralogical Magazine, 43, 931-937.
Carlson, L., Bigham, J. M., Schwertmann, U., Kyek, A., and Wagner, F. (2002). Scavenging of as from acid mine drainage by schwertmannite and ferrihydrite: A comparison with synthetic analogues. Environmental Science & Technology, 36(8), 1712-1719. doi: Doi 10.1021/Es0110271.
Carter., M. R., and Gregorich, E. G. (2007). Soil Sampling and Methods of Analysis, Second Edition. Canadian Society of Soil Science.
Chalmin, E., Farges, F., and Brown, G. (2009). A pre-edge analysis of Mn K-edge XANES spectra to help determine the speciation of manganese in minerals and glasses. Contributions to Mineralogy and Petrology, 157(1), 111-126. doi: DOI 10.1007/s00410-008-0323-z.
Chen, C. J., and Jiang, W. T. (2012). Influence of waterfall aeration and seasonal temperature variation on the iron and arsenic attenuation rates in an acid mine drainage system. Applied Geochemistry, In Press.
Chukhrov, F. V., Gorshkov, A. I., Rudnitskaya, E. S., Beresovskaya, V. V., and Sivtsov, A. V. (1980). Manganese Minerals in Clays - a Review. Clays and Clay Minerals, 28(5), 346-354.
Equeenuddin, S. M., Tripathy, S., Sahoo, P. K., and Panigrahi, M. K. (2010). Geochemistry of ochreous precipitates from coal mine drainage in India. Environmental Earth Sciences, 61(4), 723-731. doi: DOI 10.1007/s12665-009-0386-9.
Farkas L, and Pertlik F (1997). Crystal structure determinations of felsobanyaite and basaluminite, Al4(SO4)(OH)10•4H2O. Acta Mineralogica Petrographica, 38, 5-15.
Ferris, F. G., Fyfe, W. S., and Beveridge, T. J. (1988). Metallic Ion Binding by Bacillus-Subtilis - Implications for the Fossilization of Microorganisms. Geology, 16(2), 149-152.
Fernandez-Martinez A, Timon V, Roman-Ross G, Cuello G J, Daniels J E, and Ayora C (2010). The structure of schwertmannite, a nanocrystalline iron oxyhydroxysulfate. American, Mineralogist, 95,1312-1322.
Fortin, D., Ferris, F. G., and Beveridge, T. J. (1997). Surface-mediated mineral development by bacteria. Geomicrobiology: Interactions between Microbes and Minerals, 35, 161-180.
Fortin, D., and Langley, S. (2005). Formation and occurrence of biogenic iron-rich minerals. Earth-Science Reviews, 72(1-2), 1-19. doi: DOI 10.1016/j.earscirev.2005.03.002.
Frierdich, A. J., Hasenmueller, E. A., and Catalano, J. G. (2011). Composition and structure of nanocrystalline Fe and Mn oxide cave deposits: Implications for trace element mobility in karst systems. Chemical Geology, 284(1-2), 82-96. doi: DOI 10.1016/j.chemgeo.2011.02.009.
Fukushi, K., Sasaki, M., Sato, T., Yanase, N., Amano, H., and Ikeda, H. (2003). A natural attenuation of arsenic in drainage from an abandoned arsenic mine dump. Applied Geochemistry, 18(8), 1267-1278. doi: Doi 10.1016/S0883-2927(03)00011-8.
Guillemin, C. (1956). Contribution a la mineralogie des arsenates, phosphates et vanadates de cuivre. Bulletin De La Societe Francaise Mineralogie Et De Cristallographie, 79, 7-95.
Haung, C. K., and Wang, Y. (1955). Pyrite ore deposits in Chinkuashih mine, Taiwan: Minerals exploration annual report. Mineral Survey Team, 1-45.
Henley, R. W., and Berger B. R (2012).Pyrite–sulfosalt reactions and semimetal fractionation in the Chinkuashih, Taiwan, copper–gold deposit: a 1 Ma paleo-fumarole. Geofluids,doi: 10.1111/j.1468-8123.2012.00367.x.
Hochella, M. F., Moore, J. N., Golla, U., and Putnis, A. (1999). A TEM study of samples from acid mine drainage systems: Metal-mineral association with implications for transport. Geochimica Et Cosmochimica Acta, 63(19-20), 3395-3406.
Huang, C. K., and Yen, K. S. (1977). Special fratures of the ore deposits of the Changjen series, Chinkuashih mine, Taiwan. Acta Geologica Taiwanica(19), 1-12.
Kasama, T., and Murakami, T. (2001). The effect of microorganisms on Fe precipitation rates at neutral pH. Chemical Geology, 180(1-4), 117-128.
Kashkay C. M., Borovskaya Y. B., and Babazade M. A. (1975) Determination of delta G°f 298 of synthetic jarosite and its sulfate analogues.Geochem. Interl. 12, 115-121.
Kennedy, C. B., Scott, S. D., and Ferris, F. G. (2003). Characterization of bacteriogenic iron oxide deposits from Axizl Volcano, Juan de Fuca Ridge, Northeast Pacific Ocean. Geomicrobiology Journal, 20, 199-214.
Kim, J. J., Kim, S. J., and Tazaki, K. (2002). Mineralogical characterization of microbial ferrihydrite and schwertmannite, and non-biogenic Al-sulfate precipitates from acid mine drainage in the Donghae mine area, Korea. Environmental Geology, 42(1), 19-31. doi: DOI 10.1007/s00254-002-0530-2.
Kirby, C. S., Thomas, H. M., Southam, G., and Donald, R. (1999). Relative contributions of abiotic and biological factors in Fe II oxidation in mine drainage. Applied Geochemistry, 14, 511-530.
Kloprogge, J. T., and Frost, R. L. (2000). Raman microscopy study of tyrolite: A multi-anion arsenate mineral. Applied Spectroscopy, 54(4), 517-521.
Krivovichev, S. V., Chernyshov, D. Y., Dobelin, N., Armbruster, T., Kahlenberg, V., Kaindl, R., and Kaltenhauserz, G. (2006). Crystal chemistry and polytypism of tyrolite. American Mineralogist, 91(8-9), 1378-1384. doi: Doi 10.2138/Am.2006.2040.
Lee, G., Bigham, J. M., and Faure, G. (2002). Removal of trace metals by coprecipitation with Fe, Al and Mn from natural waters contaminated with acid mine drainage in the Ducktown Mining District, Tennessee. Applied Geochemistry, 17(5), 569-581.
Majzlan, J., Navrotsky, A., and Schwertmann, U. (2004). Thermodynamics of iron oxides: Part III. Enthalpies of formation and stability of ferrihydrite (similar to Fe(OH)(3)), schwertmannite (similar to FeO(OH)(3/4)(SO4)(1/8)), and epsilon-Fe2O3. Geochimica Et Cosmochimica Acta, 68(5), 1049-1059.
Manceau, A., Gorshkov, A. I., and Drits, V. A. (1992a). Structural Chemistry of Mn, Fe, Co, and Ni in Manganese Hydrous Oxides .1. Information from Xanes Spectroscopy. American Mineralogist, 77(11-12), 1133-1143.
Manceau, A., Gorshkov, A. I., and Drits, V. A. (1992b). Structural Chemistry of Mn, Fe, Co, and Ni in Manganese Hydrous Oxides .2. Information from Exafs Spectroscopy and Electron and X-Ray-Diffraction. American Mineralogist, 77(11-12), 1144-1157.
Marescotti, P., Carbone, C., Comodi, P., Frondini, F., and Lucchetti, G. (2012). Mineralogical and chemical evolution of ochreous precipitates from the Libiola Fe-Cu-sulfide mine (Eastern Liguria, Italy). Applied Geochemistry, 27(3), 577-589. doi: DOI 10.1016/j.apgeochem.2011.12.024.
Michel F M, Ehm L, Antao S M, Lee P L, Chupas P J, Liu G, Strongin D R,Schoonen M A A, Phillips B L, and Parise J B(2007). The structure of ferrihydrite, a nanocrystalline material. Science, 316, 1726-1729.
Murad, E., and Rojik, P. (2003). Iron-rich precipitates in a mine drainage environment: Influence of pH on mineralogy. American Mineralogist, 88(11-12), 1915-1918.
Noike, T., Nakamura, K., and Matsumoto, J. I. (1983). Oxidation of Ferrous Iron by Acidophilic Iron-Oxidizing Bacteria from a Stream Receiving Acid-Mine Drainage. Water Research, 17(1), 21-27.
Nordstrom, D. K., Plummer, L. N., Langmuir, D., Busenberg, Eurybiades, May, H. M., Jones, B. F., and Parkhurst, D. L., (1990), Revised chemical equilibrium data for major water-mineral reactions and their limitations, in Melchior, D. C., and Bassett, R. L., eds., Chemical modeling of aqueous systems II: American Chemical Society Symposium Series 416, p. 398-413.
Nordstrom, D. K., Roberson, C. E., Ball, J. W., and Hanshaw, B. B. (1986). The gconcentrations in natural water. II. Field occurrence and identification of aluminum hydroxysulfate precipitates. Proc Geol Soc Am Ann Mtg 16:611.
Nordstrom, D. K., Ball, J. W., Roberson, C. E., and Hanshaw, B. B. (1984). The effect of sulfade on aluminum . Science, 232, 54-56.
Okazaki, M., Sugita, T., Shimizu, M., Ohode, Y., Iwamoto, K., deVrinddeJong, E. W., and Corstjens, P.L.A.M. (1997). Partial purification and characterization of manganese-oxidizing factors of Pseudomonas fluorescens GB-1. Applied and Environmental Microbiology, 63(12), 4793-4799.
Parafiniuk, J., and Siuda, R. (2006). Schwertmannite precipitated from acid mine drainage in the Western Sudetes (SW Poland) and its arsenate sorption capacity. Geological Quarterly, 50(4), 475-486.
Parkhurst, D. L., and Appelo, C. A. J. (1999). User’s Guide to PHREEQC (Version 2), a Computer Program for Speciation, Batch Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. U.S. Geol. Surv. Water-Resour. Invest., Rep. 99-4259.
Regenspurg, S., Brand, A., and Peiffer, S. (2004). Formation and stability of schwertmannite in acidic mining lakes. Geochimica Et Cosmochimica Acta, 68(6), 1185-1197. doi: DOI 10.1016/j.gca.2003.07.015.
Robie, R. A., and Waldbaum, D. R., (1968), Thermodynamic properties of minerals and related substances at 298.15/K (25.0/C) and one atmosphere (1.013 bars) pressure and at higher temperatures: U. S.Geological Survey Bulletin 1259, 256 p.
Schrenk, M. O., Edwards, K. J., Goodman, R. M., Hamers, R. J., and Banfield, J. F. (1998). Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans: Implications for generation of acid mine drainage. Science, 279(5356), 1519-1522.
SchultzeLam, S., Fortin, D., Davis, B. S., and Beveridge, T. J. (1996). Mineralization of bacterial surfaces. Chemical Geology, 132(1-4), 171-181.
Schwertmann, U., and Carlson, L. (2005). The pH-dependent transformation of schwertmannite to goethite at 25 degrees C. Clay Minerals, 40(1), 63-66. doi: Doi 10.1180/0009855054010155.
Schwertmann, U., Friedl, J., and Stanjek, H. (1999). From Fe(III) ions to ferrihydrite and then to hematite. Journal of Colloid and Interface Science, 209(1), 215-223.
Schwertmann, U., and Murad, E. (1983). Effect of Ph on the Formation of Goethite and Hematite from Ferrihydrite. Clays and Clay Minerals, 31(4), 277-284.
Singh, S.S., (1969). Basic aluminum sulfate formed as a metastable phase and its transformation to gibbsite. Canadian Journal of Soil Science 49, 383–388.
Takahashi, Y., Manceau, A., Geoffroy, N., Marcus, M. A., and Usui, A. (2007). Chemical and structural control of the partitioning of Co, Ce, and Pb in marine ferromanganese oxides. Geochimica Et Cosmochimica Acta, 71(4), 984-1008. doi: DOI 10.1016/j.gca.2006.11.016.
Tebo, B. M., Bargar, J. R., Clement, B. G., Dick, G. J., Murray, K. J., Parker, D., and Webb, S. M. (2004). Biogenic manganese oxides: Properties and mechanisms of formation. Annual Review of Earth and Planetary Sciences, 32, 287-328. doi: DOI 10.1146/annurev.earth.32.101802.120213.
Tebo, B. M., Johnson, H. A., McCarthy, J. K., and Templeton, A. S. (2005). Geomicrobiology of manganese(II) oxidation. Trends in Microbiology, 13(9), 421-428. doi: DOI 10.1016/j.tim.2005.07.009.
Tsai, L. L., Chen, C. S., and Sun, L. C. (1991). Acid mine drainage in the Chinkuashih-Shuinantung area. Terrestrial, Atmospheric and Oceanic Science, 2(4), 297-316.
Valente, T. M., and Gomes, C. L. (2009). Occurrence, properties and pollution potential of environmental minerals in acid mine drainage. Science of the Total Environment, 407(3), 1135-1152. doi: DOI 10.1016/j.scitotenv.2008.09.050.
Vempati, R. K., and Loeppert, R. H. (1989). Influence of Structural and Adsorbed Si on the Transformation of Synthetic Ferrihydrite. Clays and Clay Minerals, 37(3), 273-279.
Vrind1, J. P. M. D., Jong, E. W. D. V.-D., Voogt, J.-W. H. D., Westbroek, P., Boogerd, F. C., and Rosson, R. A. (1986). Manganese oxidation by spores and spore coats of a marine Bacillus species. Applied and Environmental Microbiology, 52(5), 1096-1100.
Yee, N., Shaw, S., Benning, L. G., and Nguyen, T. H. (2006). The rate of ferrihydrite transformation to goethite via the Fe(II) pathway. American Mineralogist, 91(1), 92-96. doi: Doi 10.2138/Am.2006.1860.
余炳盛. (1994). 金瓜石含金角礫岩礦筒之研究Auriferous breccia pipes of Chinkuashih, Taiwan. 國立台灣大學地質學研究所博士論文.
林朝棨. (1950a). 臺灣之金鑛床. 臺灣特產叢刊, 1-15.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw