進階搜尋


下載電子全文  
系統識別號 U0026-2108201100115400
論文名稱(中文) 線性發電機之磁路設計與分析
論文名稱(英文) Magnet Circuit Design and Analysis of Linear Generator
校院名稱 成功大學
系所名稱(中) 工程科學系專班
系所名稱(英) Department of Engineering Science (on the job class)
學年度 99
學期 2
出版年 100
研究生(中文) 巫婉瑜
研究生(英文) Wan-Yu Wu
學號 N9797122
學位類別 碩士
語文別 中文
論文頁數 89頁
口試委員 口試委員-何明字
共同指導教授-謝旻甫
指導教授-周榮華
中文關鍵字 軟磁複合材料  線性發電機  等效磁路 
英文關鍵字 Soft Magnetic Composite  Linear Generator  Magnetic Circuit Model 
學科別分類
中文摘要 本研究主要在於設計一適用於自由活塞引擎之線性發電機,以供電動機車作為混合動力來源。其線性結構取代傳統曲軸結構,可減少活塞之側向力與摩擦損耗,結構簡單成本低。
主研究主要之設計重點為(1)利用軟磁複合材料(Soft Magnetic Composite, SMC)其外型限制較少之特性,進行三維磁場之發電機設計;(2)以等效磁路方法進行磁場之計算分析,以獲得初步之尺寸;(3)以三維有限元素模擬軟體,進行前述設計之驗證。最終達到後達到低動子質量、高推力密度之設計需求。
英文摘要 The objective of the study is to design a linear generator suitable via a free-piston engine to provide the hybrid power sources for electric motorcycles. With the linear structure replacing the traditional crank-shafted structure, it is able to reduce the side force and frictional energy loss of pistons. The structure is simple and low-cost.
The major emphases of the design in the research are as follows. Firstly, the design of a 3D stator generator takes the advantage of the material characteristic of soft magnetic composite. Secondly, the magnetic circuit modeling is used to calculate and analyze the magnetic field to obtain preliminary dimensions of the linear generator. Thirdly, the design is verified by a 3D finite element the simulation software for design validation. The study satisfies the design requirements of a lower mover mass and a higher thrust density.
論文目次 中文摘要 .............................................................................................I
英文摘要 ............................................................................................II
致謝 ...........................................................................................III
目錄 ...........................................................................................IV
表目錄 ...........................................................................................VI
圖目錄 .........................................................................................VII

第一章 緒論...................................................................................1
1.1 研究背景.................................................................................1
1.1.1 混合動力汽車發展背景..........................................................1
1.1.2 自由活塞引擎發展背景..........................................................4
1.2 研究動機與目的................................................................................6
1.3 本文架構............................................................................................8
第二章 文獻回顧............................................................................................9
2.1 線性發電機的原理............................................................................9
2.2 應用於自由活塞引擎之線性發電機..............................................11
2.2.1典型的管型設計.....................................................................11
2.2.2搭配近似Halbach磁化方向排列磁鐵之管型設計..............18
2.2.3橫向磁通的設計.....................................................................25
2.2.4其他相關研究.........................................................................29
2.2.5 綜合比較................................................................................31
2.3 線性電機相關設計特性探討..........................................................33
2.3.1 線性電機的摩擦力分析........................................................33
2.3.2 線性電機動子特性................................................................35
第三章 線性發電機系統組成......................................................................39
3.1 電機型式選用..................................................................................39
3.2 主要規格..........................................................................................40
3.3 硬磁材料..........................................................................................44
3.4 軟磁材料..........................................................................................47
3.5 細部結構..........................................................................................51
第四章 發電機磁路設計..............................................................................55
4.1 磁鐵尺寸設計..................................................................................55
4.2 等效磁路模型..................................................................................58
4.3 輸出特性..........................................................................................66
4.3.1 磁交鏈....................................................................................66
4.3.2 反電動勢................................................................................67
4.3.3 輸出推力................................................................................68
4.4 電氣設計..........................................................................................71
4.4.1 電磁力需求.................................71
4.4.2 電氣需求......................71
4.4.3 電流密度與銅線規格.....................75
4.4.4 佔槽率.......................76
第五章 電磁模擬驗證...........................79
第六章 結論與建議............................84

參考文獻 .........................................86

表目錄
表1-1 各類型引擎發電機體積估算..................................................................7
表2-1 WVU數值模擬使用的引擎參數.........................................................12
表2-2 WVU鐵心設計與無鐵心設計最佳化設計結果.................................14
表2-3 Kim分析之發電機規格與參數...........................................................23
表2-4 Arshad的理論設計規格......................................................................27
表2-5 Mikalsen分析自由活塞引擎規格與性能模擬...................................29
表2-6 各研究團隊技術能力與需求比較表....................................................32
表3-1 各類型線性發電機比較表....................................................................39
表3-2 初始發電機需求規格............................................................................44
表3-3 各種永磁材料之優缺點........................................................................46
表4-1 磁鐵厚度與PC值對照.........................................................................58
表4-2 等效電路與等效磁路對照表................................................................60
表4-3 電氣設計參數........................................................................................74
表4-4 AWG規格線徑與電阻對照表.............................................................75

圖目錄
圖1-1 複合動力系統能量分佈圖….......…………………….....................2
圖1-2 混合動力系統…………………………………………….................3
圖1-3 曲軸引擎與自由活塞引擎結構示意圖………………….................5
圖1-4 發電機與串聯式混合動力系統關聯圖………………….................6
圖1-5 引擎、發電機與電動機車骨架相對位置…………………...............7
圖2-1 移動線圈式線性發電機示意圖………………………...................10
圖2-2 移動鐵心式線性發電機示意圖……....….………..……...............10
圖2-3 移動磁鐵式線性發電機示意圖……....…..................….….….….11
圖2-4 Atkinson永磁無刷管型線性發電機剖面圖…..............…….…..12
圖2-5 Atkinson線性發電機實測結果………...……..................…….13
圖2-6 Blarigan線性發電機設計圖…………………………..........…….16
圖2-7 Blarigan線性發電機零件圖……………....……….................….17
圖2-8 Sheffield設計之近似Halbach管狀發電機………................….19
圖2-9 Sheffield比較三種不同的繞組排列…..………...............………20
圖2-10 Hew線性發電機組件及原型…......…………….................……..22
圖2-11 Kim線性發電機實測電磁力與設計需求比較…..........................24
圖2-12 表面附磁式與傳統埋磁式橫向磁通結構比較…..........................26
圖2-13 單相的TFM原型…..……………………………….................…..27
圖2-14 KTH設計部分TFM專利…...……………………….................…28
圖2-15 Mikalsen分析參數變動對引擎表現的影響…............................30
圖2-16 二行程循環線性引擎與發電機結合原型機配置圖…...................33
圖2-17 圓柱座標示意圖….……………………….…………….................35
圖2-18 徑向磁化管型電機示意圖..........................................................37
圖2-19 徑向磁化管型電機磁化分布圖...................................................37
圖3-1 操作頻率60Hz對應電磁力442N動態模擬結果.........................41
圖3-2 操作頻率80Hz對應電磁力380N動態模擬結果.........................42
圖3-3 操作頻率120Hz對應電磁力100N動態模擬結果.......................43
圖3-4 自由活塞引擎之外型限制….......................................................44
圖3-5 釹鐵硼類稀土永磁材料BH特性曲線…......................................45
圖3-6 軟磁複合材料組成….................................................................48
圖3-7 Hoganas之四種軟磁複合材料BH特性曲線比較......................48
圖3-8 相同面積下矩形積層齒與圓弧狀SMC齒繞線圖…....................49
圖3-9 以SMC材料製成的定子截面、鐵心與圓弧狀齒…......................50
圖3-10 以SMC材料所製作定子組裝圖…..............................................50
圖3-11 定子結構之槽面積提升說明圖…...............................................52
圖3-12 定子齒部尺寸設計….................................................................53
圖3-13 可繞線面積示意圖….................................................................54
圖4-1 操作點與負載線..…...…...…...…...…...…...…...….....................55
圖4-2 1/4單相線性發電機模型幾何尺寸說明..…...….…......................57
圖4-3 等效磁路模型……...…...…...…...…...…...….....….....................62
圖4-4 磁鐵磁極與定子凸極相對位置之氣隙磁導分佈.….....................62
圖4-5 單相等效磁路模型(未激磁狀態)……...…...…...…......................65
圖4-6 單相磁交鏈分佈圖.....................................................................66
圖4-7 繞組分佈圖................................................................................67
圖4-8 單相頓動力分佈圖.....................................................................69
圖4-9 單相勞倫茲力分佈圖.................................................................70
圖4-10 激磁推力分佈圖.........................................................................70
圖4-11 發電機系統架構示意圖…..........................................................72
圖4-12 發電機系統架構示意圖…..........................................................73
圖4-13 發電機功率參數….....................................................................73
圖4-14 槽面積示意圖….........................................................................77
圖5-1 Ansoft Maxwell軟體之電磁模組介面.......................................79
圖5-2 頓動力分布之比較.....................................................................81
圖5-3 勞倫茲力分布之比較.................................................................81
圖5-4 感應電壓分布............................................................................82
參考文獻 [1] http://www.toyota-global.com/innovation/environmental_technology/,
Toyota Global Website, Feb. 2011.
[2] 林振江、施保重,”混合動力車的理論與實際”,全華科技圖書股份有限公司,91年3月。
[3] C.C. Chan, “The state-of-the-art of electric and hybrid vehicles,” Proc. IEEE, vol. 90, no. 2, pp. 247–275, Feb. 2002.
[4] S. Barsali, C. Miulli and A. Possenti, “A control strategy to minimize fuel consumption of series hybrid electric vehicles,” IEEE Trans. Energy Conversion, vol. 19, no. 1, pp. 187–195, Mar. 2004.
[5] R.P. Pescara, “Motor compressor of the free piston type, ”
US Patent 2,241,957, 1941.
[6] W.T. Toutant , “The Worthington-Junkers free-piston air compressor, ” Journal of the American Society of Naval Engineers, vol.64, no.3, pp.583-594,1952
[7] A.L. London and A.K. Oppenheim, “The free-piston engine development – Present status and design aspects, ” Transactions of the ASME, vol.74, no.2, pp.1349-1361,1952
[8] http://www.bccarnet.com/, BCCarNet, Feb. 2011

[9] P.V. Blarigan,N. Paradiso, and S. S. Goldsborough, “Homogeneous charge compression ignition with a free piston: A new approach to ideal Otto cycle performance,” SAE Paper 982484, pp. 89–106 , 1998.
[10] J. Fredriksson and I. Denbratt, “Simulation of a two-stroke free piston engine,” SAE Paper 2004-01-1871, 2004.
[11] 何慧君,”自由活塞引擎發電機於電動機車之應用研究”,第十五屆車輛工程學術研討會,2010年11月26日。
[12] W.M. Arshad, T. Bäckström, P. Thelin and C. Sadarangani,“Integrated free-piston generators:an overview” Electrical Vehicle Symposium, 2002.
[13] I. Boldea and S.A. Nasar, “Linear electric actuators and generators”, Cambridge University Press, 1997
[14] C. M. Atkinson, S. Petreanu, N.N. Clark, R. J. Atkinson, T. I. McDaniel, S. Nandkumar and P. Famouri, "Numerical simulation of a two-stroke linear engine-alternator combination", in SAE Congress, Detroit, MI, Feb. 1999, SAE 1999-01-0921.
[15] P.V. Blarigan, “Advanced internal combustion electrical generator”, Proc 2002 U.S. DOE Hydrogen Program Review, NREL/CP-610-32405, 2002
[16] J. Wang and D. Howe, “A linear permanent magnet generator for a free-piston energy converter,” Electric machines and drives, IEEE International Conference, May 15, 2005, pp.1521 –1528.
[17] W.P. Hew, J. Jamaludin, M. Tadjuddin and K.M. Nor, “Fabrication and testing of linear electric generator for use with a free-piston engine,” National Power and Energy Conference 2003 Proceedings, Bangi, Malaysia
[18] Y.W. Kim, J. Lim, H.Y Choi, S.K. Hong, H.S. Lim, S.D. Oh and H.K. Jung, “Starting mode analysis of tubular-type linear generator for free-piston engine with dynamic characteristics,” Electrical Machines and Systems, 2007, pp.926-929.
[19] W.M. Arshad, P. Thelin, T. Backstrom and C. Sadarangani, “Finding an appropriate electrical machine for a free piston generator,” Proc. Intl Battery, Hybrid and Fuelcell Electric Vehicle Symposium and Exhibition, Busan, Korea, 2002.
[20] W.M. Arshad, P. Thelin, T. Backstrom and C. Sadarangani, “Alternative electrical machine solutions for a free piston generator”, The Sixth Intl Power Engineering Conference, Singapore, 2003
[21] C.Sadarangani, et al., “Electrical machine, ” US Patent 6,700,229, US Patent 6,717,297, 2004.
[22] R. Mikalsen and A.P. Roskilly, “The design and simulation of a two-stroke free-piston compression ignition engine for electrical power generation,” Applied Thermal Engineering, vol. 28, issue: 5-6, pp. 589-600, 2008
[23] J. Wang, “A general framework for the analysis and design of tubular linear permanent magnet machines”, IEEE Transactions on Magnetics, vol. 35, no. 3, pp.1986-2000, 1999
[24] D.C. Hanselman, “Brushless permanent magnet motor design”, The Writers' Collective, 2003.
[25] 日本SERVO株式會社, “圖解馬達入門”, 世茂出版社, 2008
[26] http://www.hitachi-metals.co.jp/, Hitachi Metals NEOMAX, Feb. 2011.
[27] 安川電機株式會社、野田永次、佐佐木嚴, “軟磁複合材料,” Japan Patent No.2007281009
[28] L. Hultman, “Advances in SMC technology – materials and applications” , Powder Metallurgy in Copenhagen, Denmark on October 13, 2009
[29] M. Persson, G. Nord, L.O. Pennander, G. Atkinson and A. Jack, “Development of Somaloy components for a BLDC motor in a scroll compressor application,” Powder Metallurgy, Busan, Korea, Sep.2006.
[30] A.G. Jack, B.C. Mecrow, P.G. Dickinson, D. Stephenson, J.S. Burdess, N. Fawcett and J.T. Evans, “Permanent-magnet machines with powdered iron cores and prepresses windings, “ IEEE Transaction on Industry Applications, vol.36, no.4, pp.1077-1084, 2000
[31] 胡凱翔, “新型線性壓縮機馬達之設計與分析”, 第四章磁路設計, 成功大學碩士論文, 民96.
[32] http://www.tdk.co.jp/, TDK Neodymium-Iron-Boron Magnets, NEOREC Series, Oct. 2010,
[33] K. Mizutani, S. Hayashi and N. Matsui, “Modeling and control of hybrid stepping motors,” Industry Applications Conference, 28th Industry Applications Society Annual Meeting IEEE, 1993.
[34] T. Yoshimura, H.J. Kim, M Watada, S. Torii and D. Ebihara, “Analysis of the reduction of detent force in a permanent magnet linear synchronous motor,” IEEE Transactions on Magnetics, vol. 31, no. 6, November, 1995.
[35] 林繼謙, “岸基震盪水柱式波浪發電系統之設計”, 第四章發電機等效電路,成功大學碩士論文, 民98.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-08-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw