系統識別號 U0026-2107202023440800 論文名稱(中文) 腦多孔彈性模型的混合解析和數值方法 論文名稱(英文) A Mixed Analytical and Numerical Method for Brain Poroelastic Models 校院名稱 成功大學 系所名稱(中) 數學系應用數學碩博士班 系所名稱(英) Department of Mathematics 學年度 108 學期 2 出版年 109 研究生(中文) 廖士綱 研究生(英文) Shih-Kang Liao 電子信箱 L18021010@mail.ncku.edu.tw 學號 L18021010 學位類別 博士 語文別 英文 論文頁數 64頁 口試委員 口試委員-陳宜良口試委員-侯世章口試委員-胡偉帆口試委員-陳旻宏指導教授-舒宇宸 中文關鍵字 多室多孔彈性模型  腦力學  解析解 英文關鍵字 multicompartmental poroelastic model  Cerebral Poromechanics  Analytical Solution 學科別分類 中文摘要 在這項研究中，我們為腦多孔彈性模型提出了一種混合分析和數值方法。單網絡和多室多孔彈性模型被用來描述大腦組織位移和各種腦脊液壓力的相互作用。通過匹配邊界條件，導出了解析的穩態通解，並透過邊界條件對係數進行了數值求解。對於動力學問題，採用交錯網格的有限差分法消除了非物理振動。 數值實驗表明穩態解的二階收斂性。得到當在邊界上施加衝擊時，腦質裡波傳輸的模擬。結果表明，該波被吸收並收斂到穩態解。 英文摘要 In this study, we proposed a mixed analytical and numerical method for brain poroelastic models. Single-network and multicompartmental poroelastic models are applied to describe the interaction between the displacement of the brain tissue and the pressure of various cerebrospinal fluid. General solutions of the steady state are derived analytically, and the coefficients are solved numerically to agree with the boundary conditions. For dynamical problems, non-physical oscillation is eliminated by finite difference method with staggered grid. The numerical experiments show the second-order convergence for the steady state solutions. Wave transmission in brain is observed when an impact is applied to the boundary. The results show that the wave decays in time, and the displacement eventually converges to the steady state. 論文目次 Contents 1 Introduction 1 2 Modeling 4 2.1 Modeling PoroElasticity Theory 4 2.1.1 Solid Structure of Brain 4 2.1.2 Circulatory of CSF 4 2.1.3 Blood circulation and interaction 5 2.1.4 Governing Equations 6 2.1.5 Boundary Conditions 9 3 Analytical Solutions 11 3.1 Single-network PoroElasticity Theory (SPET) 11 3.1.1 Analytical Steady State Solution of SPET 12 3.1.2 Duhamal’s Principle in SPET 16 3.2 MPET 19 3.2.1 MPET Boundary Conditions 19 3.2.2 Steady State Solution in MPET 21 4 Numerical Solutions 26 4.1 Numerical Solution of SPET 26 4.1.1 Uniform Mesh 26 4.1.2 Computing Process in Uniformly Mesh 27 4.1.3 Dual Mesh 30 4.1.4 Computing Process in Dual Mesh 34 4.2 Numerical Steady State Solution of SPET 35 5 Numerical experiments 40 5.1 Impact Experiment in SPET 40 5.2 Neumann/Dirichlet Condition in Capillary (MPET) 45 6 Conclusions 46 References 47 Appendix A Gradient, Divergence, Laplacian in Spherical Coordinates 50 Appendix B Effect of Coefficient in MPET 51 Appendix C Difference in two type of grids 62 參考文獻 [1] A. Raslan and A. Bhardwaj, “Medical management of cerebral edema,” Neurosurg Focus, vol. 22, no. 5, pp. 1–12, 2007. [2] H. L. Rekate, “The definition and classification of hydrocephalus: a personal recommendation to stimulate debate,” Cerebrospinal Fluid Research, vol. 5, no. 2, pp. 1–7, 2008. [3] G. W. Schmidt, “A mathematical theory of capillary exchange as a function of tissue structure,” Bulletin of Mathematical Biophysics, vol. 14, pp. 229–263, 1952. [4] E. A. B. Jr. and O. Sato, “Hydrocephalus: Changes in formation and absorption of cerebrospinal fluid within the cerebral ventricles,” Journal of Neurosurgery, vol. 20, no. 12, pp. 1050–1063, 1963. [5] H. Cserr, “Potassium exchange between cerebrospinal fluid, plasma, and brain,” Am. J. Physiol., vol. 209, no. 6, pp. 1219–1226, 1965. [6] C. S. Patlak, “Analysis of the distribution of materials within the blood-brain-cerebrospinal fluid system,”Bulletin of Mathematical Biophysics, vol. 29, pp. 5139–531, 1967. [7] H. J. Reulen, R. Graham, M. Spatz, and I. Klatzo, “Role of pressure gradients and bulk flow in dynamics of vasogenic brain edema,” Journal of Neurosurgery, vol. 46, no. 1, pp. 24–35, 1977. [8] S. I. RAPOPORT, “A mathematical model for vasogenic brain edema,” Journal of Theoretical Biology, vol. 74, no. 3, pp. 439–467, 1978. [9] O. C. Zienkiewicz, C. T. Chang, and P. Bettess, “Drained, undrained, consolidating and dynamic behaviour assumptions in soil,” Géotechnique, vol. 30, no. 4, pp. 385–395, 1980. [10] O. C. Zienkiewicz, “Basic formulation of static and dynamic behaviours of soil and other porous media,”Applied Mathematics and Mechanics, vol. 3, pp. 457–468, 1982. [11] M. A. Biot, “General theory of three‐dimensional consolidation,” Journal of Applied Physics, vol. 12, no. 2, pp. 155–164, 1941. [12] M. A. Biot and F. Clingan, “Bending settlement of a slab resting on a consolidating foundation,” Journal of Applied Physics, vol. 13, pp. 35–39, 1942. [13] M. A. Biot, “Theory of elasticity and consolidation for a porous anisotropic solid,” Journal of Applied Physics, vol. 26, pp. 182–185, 1956. [14] ——, “Theory of propagation of elastic waves in a fluid-saturated porous solid.i. low-frequency range,”Journal of the Acoustical Society of America, vol. 28, pp. 168–178, 1956. [15] ——, “Theory of propagation of elastic waves in a fluid‐saturated porous solid.ii. higher frequency range,”Journal of the Acoustical Society of America, vol. 28, pp. 179–191, 1956. [16] ——, “General solutions of the equations of elasticity and consolidation for a porous material,” Journal of Applied Mechanics, vol. 78, pp. 91–96, 1956. [17] ——, “The elastic coefficients of the theory of consolidation,” Journal of Applied Mechanics, vol. 24, pp. 594–601, 1957. [18] O. C. Zienkiewicz, A. H. C. Chan, M. Pastor, D. K. Paul, and T. Shiomi, “Static and dynamic behaviour of soils : a rational approach to quantitative solutions. i. fully saturated problems,” Mathematical and Physical Sciences, vol. 429, no. 1877, pp. 285–309, 1990. [19] O. C. Zienkiewicz, Y. M. Xie, B. A. Schrefler, A. Ledesma, and N. Biĉaniĉ, “Static and dynamic behaviour of soils : a rational approach to quantitative solutions. ii. semi-saturated problems,” Mathematical and Physical Sciences, vol. 429, no. 1877, pp. 311–321, 1990. [20] T. Nagashima, N. Tamaki, S. Matsumoto, B. Horwitz, and Y. Seguchi, “Biomechanics of hydrocephalus: A new theoretical model,” Neurosurgery, vol. 21, no. 6, pp. 898–906, 1987. [21] A. . P.K.Banerjee, “Fundamental solutions of biot’s equations of dynamic poroelasticity,” International Journal of Engineering Science, vol. 31, no. 5, pp. 817–830, 1993. [22] J. Chen, “Time domain fundamental solution to blot’s complete equations of dynamic poroelasticity. parti: Two-dimensional solution,” Int. J. Solids Structures, vol. 31, no. 10, pp. 1447–1490, 1994. [23] ——, “Time domain fundamental solution to blot’s complete equations of dynamic poroelasticity. partii:three-dimensional solution,” Int. J. Solids Structures, vol. 31, no. 2, pp. 169–202, 1994. [24] M. Kaczmarek, R. P.Subramaniam, and S. R.Neff, “The hydromechanics of hydrocephalus: Steady-state solutions for cylindrical geometry,” Bulletin of Mathematical Biology, vol. 59, no. 2, pp. 295–323, 1997. [25] G. A. . M. Dökmeci, “A uniqueness theorem in biot’s poroelasticity theory,” Z. angew. Math. Phys., vol. 49, pp. 838–846, 1998. [26] F. Gaspar, F. Lisbona, and P. Vabishchevich, “A finite difference analysis of biot’s consolidation model,”Applied Numerical Mathematics, vol. 44, no. 4, pp. 487–506, 2003. [27] I.Sobey and B. Wirth, “Effect of non-linear permeability in a spherically symmetric model of hydrocephalus,”Mathematical Medicine and Biology, vol. 23, no. 4, pp. 339–361, 2006. [28] A. S. . I. S. . Z. Molnar, “A hydroelastic model of hydrocephalus,” Journal of Fluid Mechanics, vol. 539, no. 0, pp. 417–43, 2005. [29] B. . Y. Ventikos, “Coupling poroelasticity and cfd for cerebrospinal fluid hydrodynamics,” Journal of Fluid Mechanics, vol. 56, no. 6, pp. 1644–1651, 2009. [30] B. T. . Y. Ventikos, “Cerebral water transport using multiple-network poroelastic theory: application to normal pressure hydrocephalus,” Journal of Fluid Mechanics, vol. 667, no. 25, pp. 188–215, 2010. [31] D. Chou, J. C. Vardakis, L. Guo, B. J. Tully, and Y. Ventikos, “A fully dynamic multi-compartmental poroelastic system: Application to aqueductal stenosis,” Journal of Biomechanics, vol. 49, no. 11, pp. 2306–2312, 2016. [32] G. B. Arfken, H. J. Weber, and F. E. Harris, Mathematical Methods for Physicists 7th edition. Elsevier, 2012. 論文全文使用權限 同意授權校內瀏覽/列印電子全文服務，於2020-08-12起公開。同意授權校外瀏覽/列印電子全文服務，於2020-08-12起公開。

 如您有疑問，請聯絡圖書館 聯絡電話：(06)2757575#65773 聯絡E-mail：etds@email.ncku.edu.tw