進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2107202014365700
論文名稱(中文) 2013-2019年台灣細懸浮微粒之水溶性離子時空變化與高污染事件日形成機制解析
論文名稱(英文) Temporal and spatial variations of water-soluble ions in PM2.5 during 2013-2019 in Taiwan and their evolution processes during PM2.5 haze event
校院名稱 成功大學
系所名稱(中) 環境工程學系
系所名稱(英) Department of Environmental Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 林帥和
研究生(英文) Shaui-Ho Lin
學號 P56071133
學位類別 碩士
語文別 中文
論文頁數 138頁
口試委員 指導教授-吳義林
口試委員-林清和
口試委員-賴進興
中文關鍵字 PM2.5  水溶性離子  化學形成機制 
英文關鍵字 PM2.5  Water-soluble ion  Chemical mechism 
學科別分類
中文摘要 PM2.5一直為台灣民眾關心的議題之一,本研究為了解台灣周界PM2.5的長期趨勢變化與高濃度事件日的化學形成機制,分析了2013-2019年環保署全台手動測站水溶性離子,並結合全台自動測站氣態污染物資料一併進行探討。
由分析結果可以得到,由於冬季的PM2.5下降幅度較快,導致PM2.5濃度呈現逐年下降的趨勢,而水溶性離子於PM2.5中占比在這七年間下降幅度約為15-20%。在2013-2016年間,PM2.5中水溶性離子下降的質量濃度較PM2.5多,其中又以硫酸根離子下降最多,占比下降約3-22%,說明了在這三年間除了水溶性離子外,有其他的成分組成是上升的,而在2016-2019年間卻沒有上述現象的發生;在空間分布中,硝酸根離子質量濃度於PM2.5中占比的空間分布與PM2.5空間分布類似,但硫酸根離子於PM2.5中占比的空間分布卻沒有此種現象的發生。
經由離子間的相關係數發現各空品區PM2.5中主要鹽類存在形式有所不同,推論PM2.5中裡面的成分會隨著各空品區間污染來源不同而有所變動。在不同污染物濃度區間分布中,硝酸根離子在PM2.5中占比隨著PM2.5濃度上升而增加,硝酸根離子上升的速率比PM2.5快了3.15倍,但在當日前驅物質濃度上升的時候,硝酸根離子於PM2.5中的占比卻沒有上升,推論硝酸根離子於PM2.5中占比上升的原因並不是因為當日前驅物質上升而造成。
由高濃度事件日分析結果可以得到形成高濃度事件日形成的可能機制為二氧化氮在PM2.5高濃度事件日發生前日白天與臭氧發生光化學反應形成NO3 radical (NO_2+O_3→NO_3),而形成的NO3 radical會與夜間高濃度二氧化氮反應形成二氧化五氮(NO_3+NO_2→〖N_2 O〗_5),二氧化五氮會與水蒸氣反應形成大量硝酸氣體,並與氨氣結合導致PM2.5濃度上升,而由手動測站分析結果可以看出當夜間高濃度二氧化氮濃度上升時,硝酸鹽的成分組成也變高。
英文摘要 This study discusses the water-soluble ions in PM2.5 during 2013-2019 in Taiwan and their evolution processes during PM2.5 haze event. From 2013 to 2016, the sulfate fraction in PM2.5 decreased about 3-22%, but the composition of other components in PM2.5 increased. The spatial distribution of the fraction of nitrate in each season is similar to that of PM2.5, but fraction of sulfate does not have similar pattern in Taiwan. In the different PM2.5 concentrations, the fraction of nitrate in PM2.5 increases with the PM2.5 concentration, and nitrate concentration increment rate is 3.15 times greater than that of PM2.5. The possible mechanism for the formation of high PM2.5 event days is the photochemical reaction between NO2 and ozone on the day before the day of high PM2.5 event days to form NO3 radical, and the formation of NO3 radical will react with high concentration of NO2 at night to form N2O5. The concentration of PM2.5 increases because of the liquid-phase reaction between N2O5 and water to form a large amount of nitric acid gas, which reacts with NH3 to form PM2.5.
論文目次 摘要……………………………………………………………………..I
誌謝………………………………………………………….V
目 錄.. VII
表目錄 ……………………………………………IX
圖目錄 …………………………………………………………….XIII
第1章、前言…………………………………………..1
1.1 研究動機 1
1.2 研究目的 2
第2章、文獻回顧…………………………………………………..3
2.1 懸浮微粒物化特性相關研究 3
2.1.1 大氣懸浮微粒之定義、分類與粒徑分布 3
2.1.2 細懸浮微粒之化學組成及其來源 6
2.2 細懸浮微粒變化之相關研究 14
2.2.1 長期趨勢變化之相關研究 14
2.2.2 高濃度事件日成因 14
第3章、研究方法…………………………………………15
3.1 研究架構 15
3.2 細懸浮微粒手動採樣監測與分析 16
3.2.1 採樣方法 16
3.2.2 樣品篩選原則 17
3.2.3 成分分析原理 20
3.2.4 品保品管原理 22
第4章、結果與討論………………………………25
4.1 七測站長期趨勢分析 25
4.1.1 樣品代表性問題 25
4.1.2 七測站PM2.5與其水溶性離子質量濃度長期趨勢變化 35
4.2 2013-2019年全台PM2.5與其水溶性離子成分變化 64
4.2.1 全台PM2.5質量濃度與水溶性離子時空變化 64
4.2.2 PM2.5於各空品區成分組成差異 103
4.2.3 PM2.5於不同污染物濃度區間變化 109
4.3 高PM2.5濃度事件日形成機制解析 117
4.3.1 水溶性離子放大比例 117
4.3.2 高濃度事件日中硝酸鹽可能形成機制 119
4.3.3 全台各測站於不同情境下濃度變化情形 126
第5章、結論與建議……………………………………………………..131
5.1 結論………………………………………………………..131
5.2 建議…………………………………………………..132
第6章、參考資料………………………………………..133
參考文獻 Asman, W.A.W., Drukker, B. and Janssen, A.J., (1988). Ammonia Emission and Variations, Atmospheric Environment, Vol.22, No.7, pp.725-735.
Chow, J. C. (1995). Measurement methods to determine compliance with ambient air quality standards for suspended particles. Journal of the Air & Waste Management Association, 45(5), 320-382.
Dao, X., Wang, Z., Lv, Y., Teng, E., Zhang, L. and Wang, C. (2014). Chemical characteristics of water-soluble ions in particulate matter in three metropolitan areas in the north China plain. PLoS One, 9(12), e113831.
Engling, G., Lee, J. J., Tsai, Y. W., Lung, S. C. C., Chou, C. C. K. and Chan, C. Y. (2009). Size-resolved anhydrosugar composition in smoke aerosol from controlled field burning of rice straw. Aerosol Science and Technology, 43(7), 662-672.
Fraser, M. P. and Cass, G. R. (1998). Detection of excess ammonia emissions from in-use vehicles and the implications for fine particle control. Environmental Science & Technology, 32(8), 1053-1057.
Fu, X., Guo, H., Wang, X., Ding, X., He, Q., Liu, T. and Zhang, Z. (2015). PM2. 5 acidity at a background site in the Pearl River Delta region in fall-winter of 2007–2012. Journal of hazardous materials, 286, 484-492.
Gray, H. A., Cass, G. R., Huntzicker, J. J., Heyerdahl, E. K. and Rau, J. A. (1986). Characteristics of atmospheric organic and elemental carbon particle concentrations in Los Angeles. Environmental Science & Technology, 20(6), 580-589.
He, H., Wang, Y., Ma, Q., Ma, J., Chu, B., Ji, D. and Hao, J. (2014). Mineral dust and NOx promote the conversion of SO 2 to sulfate in heavy pollution days. Scientific reports, 4, 4172.
Jia, S., Sarkar, S., Zhang, Q., Wang, X., Wu, L., Chen, W. and Yang, L. (2018). Characterization of diurnal variations of PM2. 5 acidity using an open thermodynamic system: A case study of Guangzhou, China. Chemosphere, 202, 677-685.
Johansen, J. M., Jakobsen, J. G., Frandsen, F. J. and Glarborg, P. (2011). Release of K, Cl, and S during pyrolysis and combustion of high-chlorine biomass. Energy & Fuels, 25(11), 4961-4971.
Lu, X., Chen, Y., Huang, Y., Lin, C., Li, Z., Fung, J. C. and Lau, A. K. (2019). Differences in concentration and source apportionment of PM2.5 between 2006 and 2015 over the PRD region in southern China. Science of the total environment, 673, 708-718.
Lv, B., Cai, J., Xu, B. and Bai, Y. (2017). Understanding the rising phase of the PM 2.5 concentration evolution in Large China cities. Scientific reports, 7, 46456.
Nair, P. R., Parameswaran, K., Abraham, A. and Jacob, S. (2005). Wind-dependence of sea-salt and non-sea-salt aerosols over the oceanic environment. Journal of Atmospheric and Solar-Terrestrial Physics, 67, 884-898.
Ni, Z. Z., Luo, K., Zhang, J. X., Feng, R., Zheng, H. X., Zhu, H. R. and Cen, K. F. (2018). Assessment of winter air pollution episodes using long-range transport modeling in Hangzhou, China, during World Internet Conference, 2015. Environmental pollution, 236, 550-561.
Pierson, W. R. and Brachaczek, W. W. (1982). Particulate matter associated with vehicles on the road. II. Aerosol Science and Technology, 2(1), 1-40.
Remoundaki, E., Kassomenos, P., Mantas, E., Mihalopoulos, N. and Tsezos, M. (2013). Composition and mass closure of PM2.5 in urban environment (Athens, Greece). Aerosol Air Qual. Res, 13, 72-82.
Seinfeld, J. H., and S. N. Pandis, (1988). Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, John Wiley, New York.
Shon, Z. H., Kim, K. H., Song, S. K., Jung, K., Kim, N. J. and Lee, J. B. (2012). Relationship between water-soluble ions in PM2.52. and their precursor gases in Seoul megacity. Atmospheric Environment, 59, 540-550.
Sun, J., Liang, M., Shi, Z., Shen, F., Li, J., Huang, L. and Chang, Y. (2019). Investigating the PM2.5 mass concentration growth processes during 2013–2016 in Beijing and Shanghai. Chemosphere, 221, 452-463.
Tsitouridou, R. and Samara, C. (1993). First results of acidic and alkaline constituents determination in air particulates of Thessaloniki, Greece. Atmospheric Environment. Part B. Urban Atmosphere, 27(3), 313-319.
U.S. EPA. (2012) Quality assurance project plan chemical speciation of PM2.5 filter samples.
U.S.EPA. Support Center for Regulatory Atmospheric Modeling (SCRAM),https://www.epa.gov/scram
Wang, G., Zhang, R., Gomez, M. E., Yang, L., Zamora, M. L., Hu, M. and Li, J. (2016). Persistent sulfate formation from London Fog to Chinese haze. Proceedings of the National Academy of Sciences, 113(48), 13630-13635.
Wang, H. L., Qiao, L. P., Lou, S. R., Zhou, M., Chen, J. M., Wang, Q. and Huang, C. (2015). PM2.5 pollution episode and its contributors from 2011 to 2013 in urban Shanghai, China. Atmospheric Environment, 123, 298-305.
Wang, H., Chen, X., Lu, K., Hu, R., Li, Z., Wang, H. and Liu, Y. (2019). NO3 and N2O5 chemistry at a suburban site during the EXPLORE-YRD campaign in 2018. Atmospheric Environment, 117180.
Watson, J. G. and Robinson, N. F. (1984). A method to determine accuracy and precision required of receptor model measurements. Quality Assurance in Air Pollution Measurements. Air Pollution Control Association, Pittsburgh, PA.
Wen, L., Chen, J., Yang, L., Wang, X., Xu, C., Sui, X. and Wang, W. (2015). Enhanced formation of fine particulate nitrate at a rural site on the North China Plain in summer: The important roles of ammonia and ozone. Atmospheric Environment, 101, 294-302.
Wen, L., Xue, L., Wang, X., Xu, C., Chen, T., Yang, L. and Wang, W. (2018). Summertime fine particulate nitrate pollution in the North China Plain: increasing trends, formation mechanisms and implications for control policy. Atmospheric Chemistry & Physics, 18(15).
Wolff, G. T. (1984). On the nature of nitrate in coarse continental aerosols. Atmospheric Environment (1967), 18(5), 977-981.
Yang, Y. R., Liu, X. G., Qu, Y., An, J. L., Jiang, R., Zhang, Y. H. and Ma, Q. X. (2015). Characteristics and formation mechanism of continuous hazes in China: a case study during the autumn of 2014 in the North China Plain. Atmospheric Chemistry and Physics, 15(14), 8165.
Yoshizumi, K. and Hoshi, A. (1985). Size distributions of ammonium nitrate and sodium nitrate in atmospheric aerosols. Environmental science & technology, 19(3), 258-261.
Yu, X., Ma, J., An, J., Yuan, L., Zhu, B., Liu, D. and Cui, H. (2016). Impacts of meteorological condition and aerosol chemical compositions on visibility impairment in Nanjing, China. Journal of Cleaner Production, 131, 112-120.
Zhao, L., Wang, L., Tan, J., Duan, J., Ma, X., Zhang, C. and Wang, Q. (2019). Changes of chemical composition and source apportionment of PM2.5 during 2013–2017 in urban Handan, China. Atmospheric environment, 206, 119-131.
Zhao, T., Yang, L., Yan, W., Zhang, J., Lu, W., Yang, Y. and Wang, W. (2017). Chemical characteristics of PM1/PM2.5 and influence on visual range at the summit of Mount Tai, North China. Science of the Total Environment, 575, 458-466.
行政院環保署(1988),『惡臭物質防制手冊』。
行政院環保署,空氣污染排放量查詢系統,http://teds.epa.gov.tw/new_main2-0-1.htm。
行政院環保署,環境資源資料庫,http://erdb.epa.gov.tw/ERDBIndex.aspx。
行政院環保署,環境檢驗所,水中陰離子檢測方法-離子層析法(NIEAW415.53B)。
行政院環保署,環境檢驗所,空氣中懸浮微粒(PM2.5)檢測方法-手動採樣法 (NIEA A205.11C)。
吳義林(2019a),「空氣污染物氨調查及減量示範計畫」,環保署專案計畫。
吳義林(2019b),「達成周界品質標準之綜合管制策略」,空污科研專案計畫。
施維軒(2019),"以質量平衡法建立原料作業之逸散性粒狀物排放係數",國立成功大學環境工程研究所碩士論文。
徐逸庭(2019),"一貫作業煉鋼廠原料堆置場逸散性粒狀物之綜合排放係數及其對空氣品質之影響",國立成功大學環境工程研究所碩士論文。
張景皓(2015),"南部二次衍生性氣膠形成速率與前驅物探討",國立成功大學環境工程研究所碩士論文。
張舒晴(2018),"應用CMB受體模式分析餐飲油煙對細懸浮微粒濃度之影響" ,國立成功大學環境工程研究所碩士論文。
陳昭宏(2018),"一貫作業煉鋼廠之原物料堆逸散性粉塵研究",國立成功大學環境工程研究所碩士論文。
楊靖民(1999),"營建工地懸浮微粒中金屬元素之特徵",國立成功大學環境工程研究所碩士論文。

劉彥甫(2011),"應用Fluent模式針對雲林麥寮離島工業區揚塵與海鹽之收集效率研究",國立成功大學環境工程研究所碩士論文。
劉聖恩(2018),"2013-2016年台灣地區細懸浮微粒之水溶性離子組成",國立成功大學環境工程研究所碩士論文。
蔡怡君(2008),"不同地區懸浮微粒成分特徵之觀測與模擬分析研究",國立雲林科技大學環境與安全工程研究所碩士論文。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-07-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-07-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw