進階搜尋


下載電子全文  
系統識別號 U0026-2107202013195200
論文名稱(中文) 利用遙測資料及水文模型評估印度河上游盆地之冰凍圈動力學
論文名稱(英文) Assessment of Cryosphere Dynamics in Upper Indus Basin using Integration of Remote Sensing Data and Hydrological Model
校院名稱 成功大學
系所名稱(中) 測量及空間資訊學系
系所名稱(英) Department of Geomatics
學年度 108
學期 2
出版年 109
研究生(中文) 胡督塔
研究生(英文) Dostdar Hussain
學號 P68067051
學位類別 博士
語文別 英文
論文頁數 91頁
口試委員 召集委員-黃金維
口試委員-蕭宇伸
口試委員-韓仁毓
口試委員-曾國欣
口試委員-江凱偉
指導教授-郭重言
中文關鍵字 none 
英文關鍵字 MODIS Satellite  Snow Cover Area  Upper Indus Basin  Cryosat-2  GLDAS Model  GRACE Mission  Terrestrial Water Storage 
學科別分類
中文摘要 none
英文摘要 A major progress has been made for the assessment of cryosphere dynamics globally, however regional and basin scale response that differs from global response of cryosphere remain poorly understood. In this study, we present a comprehensive analysis of cryosphere dynamics in Upper Indus Basin (UIB) by using Spaceborn remote sensing satellites data along with hydrological model. The Indus River, which flows through China, India, and Pakistan, is mainly fed by melting snow and glaciers that are spread across the Hindukush, Karakoram and Himalaya (HKH) Mountains. The downstream population of the Indus Plain heavily relies on this water resource for drinking, irrigation, and hydropower generation. Therefore, its cryosphere dynamics and river runoff variability must be properly monitored. Gilgit Basin, the northwestern part of the Upper Indus Basin, is selected for studying cryosphere dynamics and its implications on river runoff. In this study, 8−day snow products (MOD10A2) of moderate resolution imaging Spectroradiometer, from 2001 to 2015 are selected to access the snow−covered area in the catchment. A non−parametric Mann–Kendall test and Sen’s slope are calculated to assess whether a significant trend exists in the Snow cover area (SCA) (%) time series data. Then, data from ground observatories for 1995–2013 are analyzed to demonstrate annual and seasonal signals in air temperature and precipitation. Results indicate that the annual and seasonal mean of SCA show a non−significant decreasing trend, but the autumn season shows a statistically significant decreasing SCA with a slope of−198.36 km2/year. The annual SCA shows a decreasing trend with the slope of−0.04 km2/year, however a sharp decline trend observed from 2010–2015. Seasonal analysis of SCA indicates that spring season has the greatest SCA compared to winter season with 59.15% SCA for winter, spring (65.33 %), summer (30.43%), and autumn (50.76%). The annual mean temperature and precipitation show an increasing trend with highest values of slope 0.05 °C/year and 14.98 mm/year, respectively. Furthermore, Pearson correlation coefficients are calculated for the hydro−meteorological data to demonstrate any possible relationship. The SCA is affirmed to have a highly negative correlation with mean temperature and runoff. Meanwhile, SCA has a very weak relation with precipitation data. The Pearson correlation coefficient between SCA and runoff is −0.82, which confirms that the Gilgit River runoff largely depends on the melting of snow cover rather than direct precipitation. The study indicates that the SCA slightly decreased for the study period, which depicts a possible impact of global warming on this mountainous region.
Gravity Recovery and Climate Experiment (GRACE) and satellite altimetry are suitable for the precise measurement of terrestrial water storage (TWS) and lake water level variations from space. In this study, two GRACE solutions, namely, spherical harmonics (SH) and mascon (MSC), are utilized with the Global Land Data Assimilation System (GLDAS) model to estimate the spatial and temporal variations of TWS in the UIB for the study period of January 2003 to December 2016. The TWS estimated by SH, MSC, and the GLDAS model are consistent and generally show negative trends of −4.47 ± 0.38 mm/year, −4.81 ± 0.49 mm/year, and −3.77 ± 0.46 mm/year, respectively. Moreover, we use the GLDAS model data to understand the roles of variations in land surface state variables (snow water equivalent (SWE), soil moisture, and canopy water storage) in enhancing or dissipating the TWS in the region. Results indicate that SWE, which has a significant contribution to GRACE TWS variability, is an important parameter. Spearman’s rank correlations are calculated to demonstrate the relationship of the GLDAS land surface state variables and the GRACE signals. A highly positive correlation between SWE with TWS is estimated by SH and MSC as 0.691and 0.649, respectively, indicating that the TWS signal is mainly reliant on snow water in the study region. The analysis of seasonal TWS indicates that TWS is high in spring and summer season while it is low in winter and autumn. In addition, the ground water storages estimated by SH and MSC solutions are nearly stable with slight increasing trends of 0.63 ± 0.48 mm/year and 0.29 ± 0.51 mm/year, respectively. Furthermore, we take advantage of the potential of satellite altimetry in measuring lake water level variations in Attabad Lake, and our result indicates that Crysot−2 SARin mode altimetry data can be used in estimating small water bodies accurately in the high mountainous region of the UIB. Our study indicates that the water level in the lake is decreasing. However, a sharp decrease in lake level was observed from 2011 to 2014, that is, −29.65 m possibly due to opening of spillway to reduced lake water level. Moreover, the climate indices data of El−Niño Southern Oscillation and Pacific Decadal Oscillation are analyzed to determine the influence of pacific climatic variability on TWS. The assessment of cryosphere dynamics in UIB probably has an importance for better management of water resource and forecasting of natural hazards.
論文目次 TABLE OF CONTENTS

ABSTRACT i
ACKNOWLEDGEMENTS iv
DEDICATION v
LIST OF FIGURES ix
LIST OF TABLES xi
LIST OF ABBREVIATIONS xii
1. CHAPTER−I INTRODUCTION 1
1.1. Background 1
1.2. Upper Indus Basin (UIB) 3
1.3. Theoretical Framework 5
1.3.1. Multi−Mission Satellite Observations 5
1.3.2. Hydrological Model Data 7
1.4. Objectives of the Study 8
1.5. Dissertation Outline 9

2. CHAPTER II: MODERATE RESOLUTION IMAGING SPECTRORADIOMETER (MODIS) FOR SNOW COVER AND HYDROLOGICAL CHARACTERISTICS OF THE GILGIT BASIN 11
2.1. Introduction 11
2.2. Materials and Methods 14
2.2.1. Gilgit River Basin 14
2.2.2. MODIS Snow Cover 17
2.2.3. Topographic Reference 20
2.2.4. SCA and In−Situ Data 21
2.3. Results 22
2.3.1. Snow Cover Dynamics 22
2.3.2. Climatic Variability Analysis 27
2.3.3. Correlation between Snow Dynamics, Climate Variables, and Streamflow 31
2.3.4. Hydrological Behavior of the Gilgit River Basin 34
2.4. Discussion 37
2.5. Chapter Summary 40

3. CHAPTER III: SPATIAL AND TEMPORAL VARIATIONS OF TERRESTRIAL WATER STORAGE IN UPPER INDUS BASIN USING GRACE MISSION AND SATELLITE ALTIMETRY 42
3.1. Introduction 42
3.2. Materials 45
3.2.1. GRACE Data 45
3.2.2. Cryosat−2 Altimetry Data 46
3.2.3. GLDAS Model Data 47
3.2.4. Tropical Rainfall Measuring Mission (TRMM) Data 47
3.2.5. ENSO and PDO index Data 47
3.2.6. In−situ Data 48
3.3. Methodology 48
3.3.1. GRACE Data Processing 48
3.3.2. Hydrological Model 50
3.3.3. Altimetry Data Processing 51
3.4. Results and Discussion 53
3.4.1. TWS Variations 53
3.4.2. Impact of Climate Variability on TWS Variation 57
3.4.3. Impact of Soil Moisture, Snow and Canopy Water on TWS 59
3.4.4. Spatial Variation in TWS 62
3.4.5. Ground Water Storage (GWS) Anomalies from GRACE 64
3.4.6. Lake Water Level Changes 65
3.4.7. Inter-annual and Decadal Changes and Pacific Climate Variability 69
3.5. Chapter Summary 71
4. CHAPTER−IV: CONCLUSIONS AND FUTURE WORK 73
5. REFERENCES 78



參考文獻 5. REFERENCES

Afzal, M., Haroon, M., Rana, A., & Imran, A. (2013). Influence of north Atlantic oscillations and southern oscillations on winter precipitation of northern Pakistan. Pakistan Journal of Meteorology, 9(18).
Aizen, V. B., Aizen, E. M., Melack, J. M., & Dozier, J. (1997). Climatic and hydrologic changes in the Tien Shan, central Asia. Journal of Climate, 10(6): 1393-1404.
Akhtar, M., Ahmad, N., & Booij, M. (2008). The impact of climate change on the water resources of Hindukush–Karakorum–Himalaya region under different glacier coverage scenarios. Journal of hydrology, 355(1-4): 148-163.
Ali, K. F., & De Boer, D. H. (2010). Spatially distributed erosion and sediment yield modeling in the Upper Indus River Basin. Water Resources Research, 46(8).
Archer, D. (2003). Contrasting hydrological regimes in the upper indus basin. Journal of Hydrology, 274(1-4): 198-210.
Ashok, K., Guan, Z., Saji, N., & Yamagata, T. (2004). Individual and combined influences of enso and the indian ocean dipole on the indian summer monsoon. Journal of Climate, 17(16): 3141-3155.
Ashok, K., & Saji, N. (2007). On the impacts of enso and indian ocean dipole events on sub-regional indian summer monsoon rainfall. Natural Hazards, 42(2): 273-285.
Baig, S. U., Khan, H., & Din, A. (2018). Spatio‐temporal analysis of glacial ice area distribution of Hunza river basin, Karakoram region of Pakistan. Hydrological Processes, 32(10): 1491-1501.
Bajracharya, S. R., & Shrestha, B. R. (2011). The status of glaciers in the Hindu kush-Himalayan region. Iternational Center for Integrated Mountain Development (ICIMOD).
Bamber, J. L., & Rivera, A. (2007). A review of remote sensing methods for glacier mass balance determination. Global and Planetary Change, 59(1-4): 138-148.
Bates, B., Kundzewicz, Z. W., Wu, S., & Palutikof, J. (2008). Climate change and water. Paper of the intergovernmental panel on climate change. IPCC Secretariat: Geneva.
Bernstein, L., Bosch, P., Canziani, O., Chen, Z., Christ, R., & Riahi, K. (2008). IPCC, 2007: Climate change 2007: Synthesis report.
Berthier, E., Arnaud, Y., Kumar, R., Ahmad, S., Wagnon, P., & Chevallier, P. (2007). Remote sensing estimates of glacier mass balances in the Himachal Pradesh (western Himalaya, India). Remote Sensing of Environment, 108(3): 327-338.
Berthier, E., Arnaud, Y., Vincent, C., & Remy, F. (2006). Biases of SRTM in high‐mountain areas: Implications for the monitoring of glacier volume changes. Geophysical Research Letters, 33(8).
Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, J. G., et al. (2012). The state and fate of Himalayan glaciers. Science, 336(6079): 310-314.
Bouzinac, C. (2014). Cryosat-2 product handbook. https://earth.esa.int/documents/10174/125272/CryoSat_Product_Handbook.
Cao, Y., Nan, Z., & Cheng, G. (2015). Grace gravity satellite observations of terrestrial water storage changes for drought characterization in the arid land of northwestern China. Remote Sensing, 7(1): 1021-1047.
Chaturvedi, R. K., Kulkarni, A., Karyakarte, Y., Joshi, J., & Bala, G. (2014). Glacial mass balance changes in the Karakoram and Himalaya based on CMIP5 multi-model climate projections. Climatic Change, 123(2): 315-328.
Chen, J. L., Wilson, C. R., & Tapley, B. D. (2010). The 2009 exceptional amazon flood and interannual terrestrial water storage change observed by GRACE. Water Resources Research, 46(12).
Cheng, M. K., Ries, J. C., & Tapley, B. D. (2011). Variations of the earth's figure axis from satellite laser ranging and GRACE. Journal of Geophysical Research-Solid Earth, 116(B1).
Da Silva, J. S., Calmant, S., Seyler, F., Moreira, D. M., Oliveira, D., & Monteiro, A. (2014). Radar altimetry aids managing gauge networks. Water resources management, 28(3): 587-603.
Dai, Y., Zeng, X., Dickinson, R. E., Baker, I., Bonan, G. B., Bosilovich, M. G., et al. (2003). The common land model. Bulletin of the American Meteorological Society, 84(8): 1013-1024.
del Río, S., Iqbal, M. A., Cano‐Ortiz, A., Herrero, L., Hassan, A., & Penas, A. (2013). Recent mean temperature trends in Pakistan and links with teleconnection patterns. International Journal of Climatology, 33(2): 277-290.
Dettmering, D., Schwatke, C., Boergens, E., & Seitz, F. (2016). Potential of Envisat Radar Altimetry for water level monitoring in the Pantanal wetland. Remote Sensing 8(7): 596.
Dong, C., & Menzel, L. (2016a). Improving the accuracy of MODIS 8-day snow products with in situ temperature and precipitation data. Journal of hydrology, 534: 466-477.
Dong, C., & Menzel, L. (2016b). Producing cloud-free modis snow cover products with conditional probability interpolation and meteorological data. Remote Sensing of Environment, 186: 439-451.
Duan, X., Guo, J., Shum, C., & Van Der Wal, W. (2009). On the postprocessing removal of correlated errors in grace temporal gravity field solutions. Journal of Geodesy, 83(11): 1095-1106.
Ek, M., Mitchell, K., Lin, Y., Rogers, E., Grunmann, P., Koren, V., et al. (2003). Implementation of Noah land surface model advances in the national centers for environmental prediction operational mesoscale eta model. Journal of Geophysical Research: Atmospheres, 108(D22).
Famiglietti, J. S., & Rodell, M. (2013). Water in the balance. Science, 340(6138): 1300-1301.
Farhan, S. B., Zhang, Y., Ma, Y., Gao, H., Rehmatullah, J., & Hashmi, D. (2014). The magnitude and seasonal stream flow fluctuations of Hunza river, Karakoram region during 1966-2010. Paper presented at the EGU General Assembly Conference Abstracts.
Farooq, U. (2014). Pakistan flood victims await unfulfilled promises. The New Humanitarian.
Feng, W., Zhong, M., Lemoine, J. M., Biancale, R., Hsu, H. T., & Xia, J. (2013). Evaluation of groundwater depletion in north China using the gravity recovery and climate experiment (GRACE) data and ground‐based measurements. Water Resources Research, 49(4): 2110-2118.
Førland, E. J., & Hanssen-Bauer, I. (2000). Increased precipitation in the Norwegian arctic: True or false? Climatic change, 46(4): 485-509.
Forsythe, N., Kilsby, C. G., Fowler, H. J., & Archer, D. R. (2012). Assessment of runoff sensitivity in the Upper Indus Basin to interannual climate variability and potential change usingMODIS satellite data products. Mountain Research and Development, 32(1): 16-30.
Fowler, H. J., & Archer, D. R. (2005). Hydro-climatological variability in the Upper Indus Basin and implications for water resources. Regional Hydrological Impacts of Climatic Change—Impact Assessment Decision Making, 295: 131-138.
Frappart, F., Fatras, C., Mougin, E., Marieu, V., Diepkilé, A., Blarel, F., et al. (2015). Radar altimetry backscattering signatures at ka, ku, c, and s bands over west Africa. Physics and Chemistry of the Earth, Parts A/B/C, 83: 96-110.
Gafurov, A., & Bárdossy, A. (2009). Cloud removal methodology from MODIS snow cover product. Hydrology and Earth System Sciences, 13(7): 1361-1373.
Gardelle, J., Berthier, E., Arnaud, Y., & Kaab, A. (2013). Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999-2011). Cryosphere, 07.
Gardner, A. S., Moholdt, G., Cogley, J. G., Wouters, B., Arendt, A. A., Wahr, J., et al. (2013). A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. science, 340(6134): 852-857.
Geruo, A., Wahr, J., & Zhong, S. (2012). Computations of the viscoelastic response of a 3-d compressible earth to surface loading: An application to glacial isostatic adjustment in Antarctica and Canada. Geophysical Journal International, 192(2): 557-572.
Gleeson, T., Wada, Y., Bierkens, M. F., & van Beek, L. P. (2012). Water balance of global aquifers revealed by groundwater footprint. Nature, 488(7410): 197-200.
Göttl, F., Dettmering, D., Müller, F., & Schwatke, C. (2016). Lake level estimation based on Cryosat-2 SAR altimetry and multi-looked waveform classification. Remote Sensing, 8(11): 885.
Hao, X., Chen, Y., Xu, C., & Li, W. (2008). Impacts of climate change and human activities on the surface runoff in the Tarim river basin over the last fifty years. Water resources management, 22(9): 1159-1171.
Hess, A., Iyer, H., & Malm, W. (2001). Linear trend analysis: A comparison of methods. Atmospheric Environment, 35(30): 5211-5222.
Hewitt, K. (2005). The Karakoram anomaly? Glacier expansion and the ‘elevation effect,’Karakoram Himalaya. Mountain Research and Development, 25(4): 332-340.
Hewitt, K. (2007). Tributary glacier surges: An exceptional concentration at Panmah glacier, Karakoram Himalaya. Journal of Glaciology, 53(181): 181-188.
Hirschi, M., Seneviratne, S. I., & Schär, C. (2006). Seasonal variations in terrestrial water storage for major midlatitude river basins. Journal of Hydrometeorology, 7(1): 39-60.
Hock, R. (2005). Glacier melt: A review of processes and their modelling. Progress in physical geography, 29(3): 362-391.
Hussain, D., Kao, H.-C., Khan, A. A., Lan, W.-H., Imani, M., Lee, C.-M., et al. (2020). Spatial and temporal variations of terrestrial water storage in Upper Indus Basin using GRACE and Altimetry data. IEEE Access, 8: 65327-65339.
Hussain, D., Kuo, C.-Y., Hameed, A., Tseng, K.-H., Jan, B., Abbas, N., et al. (2019). Spaceborne satellite for snow cover and hydrological characteristic of the Gilgit river basin, Hindukush–Karakoram mountains, Pakistan. Sensors, 19(3): 531.
Hussain, S. S., Mudasser, M., Sheikh, M., & Manzoor, N. (2005). Climate change and variability in mountain regions of Pakistan implications for water and agriculture. Pakistan Journal of Meteorology, 2(4).
Hwang, C., Cheng, Y.-S., Yang, W.-H., Zhang, G., Huang, Y.-R., Shen, W.-B., et al. (2019). Lake level changes in the Tibetan Plateau from Cryosat-2, SARAL, ICESAT, and Jason-2 altimeters. Terr. Atmos. Ocean Sci,30: 1-18.
ICIMOD. (2015). Servir science applications with a special focus on MODIS product.
Immerzeel, W. W., & Bierkens, M. F. P. (2012). Asia's water balance. Nature Geoscience, 5(12): 841-842.
Immerzeel, W. W., Droogers, P., De Jong, S., & Bierkens, M. (2009). Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing. Remote sensing of Environment, 113(1): 40-49.
Immerzeel, W. W., Van Beek, L. P., & Bierkens, M. F. (2010). Climate change will affect the Asian water towers. Science, 328(5984): 1382-1385.
Iqbal, N., Hossain, F., Lee, H., & Akhter, G. (2016). Satellite gravimetric estimation of groundwater storage variations over Indus basin in Pakistan. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,9(8): 3524-3534.
Jacob, T., Wahr, J., Pfeffer, W. T., & Swenson, S. (2012). Recent contributions of glaciers and ice caps to sea level rise. Nature, 482(7386): 514-518.
Jianchu, X., Shrestha, A., & Eriksson, M. (2009). Climate change and its impacts on glaciers and water resource management in the Himalayan region. Assessment of Snow, Glaciers and Water Resources in Asia. International Hydrological Programme of UNESCO and Hydrology and Water Resources Programme of WMO. Koblenz, Germany, 44: 54.
Jiang, L., Nielsen, K., Andersen, O. B., & Bauer-Gottwein, P. (2017). Monitoring recent lake level variations on the Tibetan plateau using Cryosat-2 SARin mode data. Journal of Hydrology, 544: 109-124.
Jin, S., & Feng, G. (2013). Large-scale variations of global groundwater from satellite gravimetry and hydrological models, 2002–2012. Global Planetary Change, 106: 20-30.
Jin, S., Hassan, A., & Feng, G. (2012). Assessment of terrestrial water contributions to polar motion from GRACE and hydrological models. Journal of Geodynamics, 62: 40-48.
Kääb, A., Berthier, E., Nuth, C., Gardelle, J., & Arnaud, Y. (2012). Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature, 488(7412): 495-498.
Kao, H.-C., Kuo, C.-Y., Tseng, K.-H., Shum, C., Tseng, T.-P., Jia, Y.-Y., et al. (2019). Assessment of Cryosat-2 and Saral/altika altimetry for measuring inland water and coastal sea level variations: A case study on Tibetan Plateau lake and Taiwan coast. Marine Geodesy: 1-17.
Khan, A. A. (2012). Attabad lake - fact sheet. Frontier Works Organization Pakistan.
Kleinherenbrink, M., Ditmar, P., & Lindenbergh, R. (2014). Retracking Cryosat data in the SARin mode and robust lake level extraction. Remote sensing of environment, 152: 38-50.
Koster, R. D., & Suarez, M. J. (1996). Energy and water balance calculations in the Mosaic LSM: National Aeronautics and Space Administration, Goddard Space Flight Center , Laboratory for Atmospheres, Data Assimilation Office.
Landerer, F. W., & Swenson, S. (2012). Accuracy of scaled GRACE terrestrial water storage estimates. Water resources research, 48(4).
Lee, S., Klein, A. G., & Over, T. M. (2005). A comparison of MODIS and Nohrsc snow‐cover products for simulating streamflow using the snowmelt runoff model. Hydrological Processes: An International Journal, 19(15): 2951-2972.
Lhamo, S. (2015). Assessment of runoff regime in Wang Chhu River basin, Bhutan by snow cover mapping and stream flow modelling: University of Twente Faculty of Geo-Information and Earth Observation (ITC).
Liang, X., Lettenmaier, D. P., Wood, E. F., & Burges, S. J. (1994). A simple hydrologically based model of land surface water and energy fluxes for general circulation models. Journal of Geophysical Research: Atmospheres, 99(D7): 14415-14428.
Long, D., Shen, Y., Sun, A., Hong, Y., Longuevergne, L., Yang, Y., et al. (2014). Drought and flood monitoring for a large Karst Plateau in southwest China using extended GRACE data. Remote Sensing of Environment, 155: 145-160.
Maida, Z., & Rasul, G. (2013). Impact of south asian high variability on monsoon precipitation in Pakistan. Pakistan Journal of Meteorology, 10(19).
Matsuo, K., & Heki, K. (2010). Time-variable ice loss in asian high mountains from satellite gravimetry. Earth and Planetary Science Letters, 290(1-2): 30-36.
McCarthy, J. J., Canziani, O. F., Leary, N. A., Dokken, D. J., & White, K. S. (2001). Climate change 2001: Impacts, adaptation, and vulnerability: Contribution of working group ii to the third assessment report of the intergovernmental panel on climate change (Vol. 2): Cambridge University Press.
Meehl, G. A., Moss, R., Taylor, K. E., Eyring, V., Stouffer, R. J., Bony, S., et al. (2014). Climate model intercomparisons: Preparing for the next phase. Transactions American Geophysical Union, 95(9): 77-78.
Mihalcea, C., Brock, B., Diolaiuti, G., D'Agata, C., Citterio, M., Kirkbride, M., et al. (2008). Using aster satellite and ground-based surface temperature measurements to derive supraglacial debris cover and thickness patterns on miage glacier (Mont Blanc Massif, Italy). Cold Regions Science and Technology, 52(3): 341-354.
Montgomery, R. J. M. W. R. (1940). Report on the work of gt walker. 39: 1-22.
Moore, S. (2009). Climate change, water and China’s national interest. China Security, 5(3): 25-39.
Muster, S., Langer, M., Abnizova, A., Young, K. L., & Boike, J. (2015). Spatio-temporal sensitivity of modis land surface temperature anomalies indicates high potential for large-scale land cover change detection in Arctic permafrost landscapes. Remote sensing of environment, 168: 1-12.
Okay Ahi, G., & Jin, S. (2019). Hydrologic mass changes and their implications in Mediterranean-climate Turkey from GRACE measurements. Remote Sensing, 11(2): 120.
Palazzi, E., von Hardenberg, J., Terzago, S., & Provenzale, A. (2015). Precipitation in the Karakoram-Himalaya: A CMIP5 view. Climate Dynamics, 45(1-2): 21-45.
Parajka, J., & Blöschl, G. (2006). Validation of modis snow cover images over Austria. HYdrol. Earth System.
Paul, F., Kääb, A., & Haeberli, W. (2007). Recent glacier changes in the Alps observed by satellite: Consequences for future monitoring strategies. Global and Planetary Change, 56(1-2): 111-122.
Paull, D. J., Lees, B. G., & Thompson, J. A. (2015). An improved liberal cloud-mask for addressing snow/cloud confusion with MODIS. Photogrammetric Engineering & Remote sensing of Environment, 81(2): 119-129.
Pavlis, N. K., Holmes, S. A., Kenyon, S. C., & Factor, J. K. (2012). The development and evaluation of the earth gravitational model 2008 (egm2008). Journal of geophysical research: solid earth, 117(B4).
Pohlert, T. (2016). Non-parametric trend tests and change-point detection. CC BY-ND, 4.
Qureshi, A. S. (2011). Water management in the Indus Basin in Pakistan: Challenges and opportunities. Mountain Research and Development 31(3): 252-261.
Ragettli, S., Pellicciotti, F., Bordoy, R., & Immerzeel, W. (2013). Sources of uncertainty in modeling the glaciohydrological response of a Karakoram watershed to climate change. Water Resources Research, 49(9): 6048-6066.
Ramillien, G., Famiglietti, J. S., & Wahr, J. (2008). Detection of continental hydrology and glaciology signals from GRACE: A review. Surveys in geophysics, 29(4-5): 361-374.
Rao, Y. (2011). Synthetic Aperture Radar (SAR) interferometry for glacier movement studies. Encyclopedia of snow, ice and glaciers Netherlands: Springer: 1133-1142.
Rasul, G., Chaudhry, Q., Mahmood, A., Hyder, K., & Dahe, Q. (2011). Glaciers and glacial lakes under changing climate in Pakistan. Pakistan Journal of Meteorology, 8(15).
Rateb, A., Kuo, C.-Y., Imani, M., Tseng, K.-H., Lan, W.-H., Ching, K.-E., et al. (2017). Terrestrial water storage in african hydrological regimes derived from GRACE mission data: Intercomparison of spherical harmonics, mass concentration, and scalar slepian methods. Sensors, 17(3): 566.
Reager, J. T., Thomas, B. F., & Famiglietti, J. S. (2014). River basin flood potential inferred using GRACE gravity observations at several months lead time. Nature Geoscience, 7(8): 588-592.
Riggs, G. A., Hall, D. K., & Salomonson, V. V. (2006). Modis snow products user guide to collection 5. Digital Media, 80(6): 1-80.
Rodell, M. (2004). Basin scale estimates of evapotranspiration using GRACE and other observations. Geophysical Research Letters, 31(20).
Rodell, M., Chen, J., Kato, H., Famiglietti, J. S., Nigro, J., & Wilson, C. R. (2006). Estimating groundwater storage changes in the Mississippi River Basin (USA) using GRACE. Hydrogeology Journal, 15(1): 159-166.
Rodell, M., Houser, P., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., et al. (2004). The global land data assimilation system. American Meteorological Society, 85(3): 381-394.
Rodell, M., Velicogna, I., & Famiglietti, J. S. (2009). Satellite-based estimates of groundwater depletion in India. Nature, 460(7258): 999.
Sakai, A., & Fujita, K. (2017). Contrasting glacier responses to recent climate change in high-mountain Asia. Scientific reports, 7(1): 13717.
Sarıkaya, M. A., Bishop, M. P., Shroder, J. F., & Ali, G. (2013). Remote-sensing assessment of glacier fluctuations in the Hindu Raj, Pakistan. International journal of remote sensing, 34(11): 3968-3985.
Sarikaya, M. A., Bishop, M. P., Shroder, J. F., & Olsenholler, J. (2012). Space-based observations of eastern Hindu kush glaciers between 1976 and 2007, Afghanistan and Pakistan. Remote sensing letters, 3(1): 77-84.
Scherler, D., Bookhagen, B., & Strecker, M. R. (2011). Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nature geoscience, 4(3): 156.
Schmidt, R., Schwintzer, P., Flechtner, F., Reigber, C., Guntner, A., Doll, P., et al. (2006). GRACE observations of changes in continental water storage. Global and Planetary Change, 50(1-2): 112-126.
Schwatke, C., Dettmering, D., Börgens, E., & Bosch, W. (2015). Potential of saral/altika for inland water applications. Marine Geodesy, 38(sup1): 626-643.
Sevruk, B. (1985). Correction of precipitation measurement: Swiss experience. Paper presented at the WMO/IAHS/ETH workshop on correction of precipitation measurements, Zurich, Switzerland.
Sevruk, B. (1989). Reliability of precipitation measurement. International Workshop on Precipitation Measurement: 13-19.
Shafeeque, M., Luo, Y., Wang, X., & Sun, L. (2019). Revealing vertical distribution of precipitation in the glacierized Upper Indus Basin based on multiple datasets. Journal of Hydrometeorology, 20(12): 2291-2314.
Sharif, M., Archer, D., Fowler, H., & Forsythe, N. (2013). Trends in timing and magnitude of flow in the Upper Indus Basin. Hydrology and Earth System Sciences, 17(4): 1503-1516.
SHIP. (1990). Ice hydrology project, Upper Indus River Basin. WAPDA-IDRC-Wilfrid Laurier University: 179.
Shrestha, A., Agrawal, N., Alfthan, B., Bajracharya, S., Maréchal, J., & Oort, B. v. (2015). The Himalayan climate and water atlas: Impact of climate change on water resources in five of Asia's major river basins. The Himalayan Climate and Water Atlas: impact of climate change on water resources in five of Asia's major river basins.
Shrestha, M., Koike, T., Hirabayashi, Y., Xue, Y., Wang, L., Rasul, G., et al. (2015). Integrated simulation of snow and glacier melt in water and energy balance‐based, distributed hydrological modeling framework at Hunza river basin of Pakistan Karakoram region. ournal of Geophysical Research: Atmospheres, 120(10): 4889-4919.
Sirguey, P., Mathieu, R., & Arnaud, Y. (2009). Subpixel monitoring of the seasonal snow cover with MODIS at 250 m spatial resolution in the southern Alps of Newzealand: Methodology and accuracy assessment. Remote Sensing of Environment, 113(1): 160-181.
Solomon, S., Manning, M., Marquis, M., & Qin, D. (2007). Climate change 2007-the physical science basis: Working group i contribution to the fourth assessment report of the IPCC (Vol. 4): Cambridge University press.
Soncini, A., Bocchiola, D., Confortola, G., Bianchi, A., Rosso, R., Mayer, C., et al. (2015). Future hydrological regimes in the Upper Indus Basin: A case study from a high-altitude glacierized catchment. Journal of Hydrometeorology, 16(1): 306-326.
Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., et al. (2013). Climate change 2013: The physical science basis.Contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change. 1535.
Su, B., Huang, J., Gemmer, M., Jian, D., Tao, H., Jiang, T., et al. (2016). Statistical downscaling of CMIP5 multi-model ensemble for projected changes of climate in the Indus River Basin. Atmospheric Research, 178: 138-149.
Swenson, S., Chambers, D., & Wahr, J. (2008). Estimating geocenter variations from a combination of GRACE and Ocean model output. Journal of Geophysical Research: Solid Earth, 113(B8).
Syed, F., Giorgi, F., Pal, J., & King, M. (2006). Effect of remote forcings on the winter precipitation of central southwest Asia part 1: Observations. Theoretical and Applied Climatology, 86(1-4): 147-160.
Syed, T. H., Famiglietti, J. S., Rodell, M., Chen, J., & Wilson, C. R. (2008). Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resources Research, 44(2).
Tahir, A. A., Chevallier, P., Arnaud, Y., Ashraf, M., & Bhatti, M. T. (2015a). Snow cover trend and hydrological characteristics of the Astore River basin (western Himalayas) and its comparison to the Hunza basin (Karakoram region). Science of the total environment, 505: 748-761.
Tahir, A. A., Chevallier, P., Arnaud, Y., Neppel, L., & Ahmad, B. (2011). Modeling snowmelt-runoff under climate scenarios in the Hunza river basin, Karakoram range, northern Pakistan. Journal of hydrology, 409(1-2): 104-117.
Tang, J., Cheng, H., & Liu, L. (2014). Assessing the recent droughts in southwestern China using satellite gravimetry. Water Resources Research, 50(4): 3030-3038.
Tangdamrongsub, N., Steele-Dunne, S., Gunter, B. C., Ditmar, P., & Weerts, A. (2014). Data assimilation of grace terrestrial water storage estimates into a regional hydrological model of the Rhine river basin. Hydrology and Earth System Sciences Discussions, 10: 9.
Tapley, B. D., Bettadpur, S., Watkins, M., & Reigber, C. (2004). The gravity recovery and climate experiment: Mission overview and early results. Geophysical Research Letters, 31(9).
Tekeli, A. E., Akyürek, Z., Şorman, A. A., Şensoy, A., & Şorman, A. Ü. (2005). Using MODIS snow cover maps in modeling snowmelt runoff process in the eastern part of Turkey. Remote Sensing of Environment, 97(2): 216-230.
Thomas, A. C., Reager, J. T., Famiglietti, J. S., & Rodell, M. (2014). A GRACE-based water storage deficit approach for hydrological drought characterization. Geophysical Research Letters, 41(5): 1537-1545.
Troch, P., Durcik, M., Seneviratne, S., Hirschi, M., Teuling, A., Hurkmans, R., et al. (2007). New data sets to estimate terrestrial water storage change. Eos, Transactions American Geophysical Union, 88(45): 469-470.
van Ogtrop, F., Ahmad, M., & Moeller, C. (2014). Principal components of sea surface temperatures as predictors of seasonal rainfall in rainfed wheat growing areas of Pakistan. Meteorological Applications, 21(2): 431-443.
Veettil, B. K., Bremer, U. F., Grondona, A. E. B., & De Souza, S. F. (2014). Recent changes occurred in the terminus of the debriscovered bilafond glacier in the Karakoram Himalayas using remotely sensed images and digital elevation models (1978–2011). Journal of Mountain Science, 11(2): 398-406.
Villadsen, H., Deng, X., Andersen, O. B., Stenseng, L., Nielsen, K., & Knudsen, P. (2016). Improved inland water levels from SAR altimetry using novel empirical and physical retrackers. Journal of hydrology,537: 234-247.
Vörösmarty, C. J., Green, P., Salisbury, J., & Lammers, R. B. (2000). Global water resources: Vulnerability from climate change and population growth. science, 289(5477): 284-288.
Voss, K. A., Famiglietti, J. S., Lo, M., Linage, C., Rodell, M., & Swenson, S. C. (2013). Groundwater depletion in the middle east from grace with implications for transboundary water management in the Tigris-euphrates-western Iran region. Water Resour Res, 49(2): 904-914.
Wagnon, P., Linda, A., Arnaud, Y., Kumar, R., Sharma, P., Vincent, C., et al. (2007). Four years of mass balance on Chhota Shigri glacier, Himachal Pradesh, India, a new benchmark glacier in the western Himalaya. Journal of Glaciology, 53(183): 603-611.
Wahr, J., Molenaar, M., & Bryan, F. (1998). Time variability of the earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE. Journal of Geophysical Research: Solid Earth, 103(B12): 30205-30229.
Wake, C. P. (1987). Spatial and temporal variation of snow accumulation in the central Karakoram, northern Pakistan.
Walker, G. T. (1923). Correlation in seasonal variation of weather. Viii: A preliminary study of world weather. 24: 75-131.
Wang, H., Chen, Y., Li, W., & Deng, H. (2013). Runoff responses to climate change in arid region of northwestern China during 1960–2010. Chinese Geographical Science, 23(3): 286-300.
Water, N., & Profile, S. (2002). Chairman federal flood commission Pakistan water sector strategy
Wingham, D., Francis, C., Baker, S., Bouzinac, C., Brockley, D., Cullen, R., et al. (2006). Cryosat: A mission to determine the fluctuations in earth’s land and marine ice fields. Advances in Space Research, 37(4): 841-871.
Winiger, M., Gumpert, M., & Yamout, H. (2005). Karakorum–Hindukush–western Himalaya: Assessing high‐altitude water resources. Hydrological Processes: An International Journal, 19(12): 2329-2338.
Wipf, S., Stoeckli, V., & Bebi, P. (2009). Winter climate change in Alpine Tundra: Plant responses to changes in snow depth and snowmelt timing. Climatic change, 94(1-2): 105-121.
Wouters, B., Bonin, J. A., Chambers, D. P., Riva, R. E., Sasgen, I., & Wahr, J. (2014). GRACE, time-varying gravity, earth system dynamics and climate change. Reports on Progress in Physics, 77(11): 116801.
Xiao, R., He, X., Zhang, Y., Ferreira, V. G., & Chang, L. (2015). Monitoring groundwater variations from satellite gravimetry and hydrological models: A comparison with in-situ measurements in the mid-atlantic region of the United States. Remote Sensing, 7(1): 686-703.
Yang, P., & Chen, Y. (2015). An analysis of terrestrial water storage variations from GRACE and GLDAS: The Tianshan mountains and its adjacent areas, central Asia. Quaternary International, 358: 106-112.
Yang, T., Wang, C., Chen, Y., Chen, X., & Yu, Z. (2015). Climate change and water storage variability over an arid Endorheic region. Journal of Hydrology, 529: 330-339.
Yeh, P. J. F., Swenson, S. C., Famiglietti, J. S., & Rodell, M. (2006). Remote sensing of groundwater storage changes in Illinois using the gravity recovery and climate experiment (GRACE). Water Resources Research, 42(12).
Yi, S., & Sun, W. (2014). Evaluation of glacier changes in high‐mountain Asia based on 10 year GRACE rl05 models. Journal of Geophysical Research: Solid Earth, 119(3): 2504-2517.
Young, G., & Hewitt, K. (1990). Hydrology research in the Upper Indus basin, Karakoram Himalaya, Pakistan. IAHS Publ, 190: 139-152.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-10起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-08-10起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw