進階搜尋


下載電子全文  
系統識別號 U0026-2107201610063500
論文名稱(中文) 共平面式電濕潤梯度電極應用於斜面上液滴動態行為之探討
論文名稱(英文) Studies of Droplet Dynamic Behaviors on an Inclined Plane by using Coplanar Gradient EWOD Electrodes
校院名稱 成功大學
系所名稱(中) 航空太空工程學系
系所名稱(英) Department of Aeronautics & Astronautics
學年度 104
學期 2
出版年 105
研究生(中文) 王友成
研究生(英文) You-Cheng Wang
學號 P46034147
學位類別 碩士
語文別 中文
論文頁數 112頁
口試委員 指導教授-呂宗行
口試委員-苗君易
口試委員-劉建惟
中文關鍵字 電濕潤  不對稱共平面式電極  微機電製程  共振頻率 
英文關鍵字 EWOD  MEMS  Droplet Resonant Frequency  Stick-Slip Motion 
學科別分類
中文摘要   本研究為應用電濕潤(electro-wetting on dielectrics, EWOD)原理驅動斜面上之微液滴,並透過改變電濕潤的驅動頻率,研究不同的驅動頻率對液滴於斜面上的動態行為所造成的影響。主要實驗設計為利用共平面式(coplanar)不對稱(asymmetric)之電極設計理論以及微機電製程加工技術來驅動微液滴於電極表面上做特定方向的驅動。
  液滴於斜面運動的影響因素之一為振動效應,本研究透過對球缺液滴進行共振頻率(Resonant Frequency)及共振模態對液滴動態行為的探討,經本研究的分析後發現液滴在共振模態時會以Stick-Slip的行為在運動。
而Stick-Slip的動態行為會與一般的電濕潤驅動不完全相同,造成此種運動狀態的原因是電濕潤效應的反應時間與共振模態所致。經由分析n=2之共振模態液滴於斜面上的運動狀態後,除了證明振動對液滴的移動速度具有影響力外,液滴的共振模態與其內流場也會影響液滴的運動行為,使液滴產生Stick-Slip的動態行為及具有較大的移動速度。
英文摘要  In this study, the dynamic behaviors of a droplet driven by EWOD (electro-wetting on a dielectrics) device with varying input frequencies on an inclined plane are investigated. New triangular coplanar EWOD electrodes fabricated by using MEMS technology are designed to generate driving force on a droplet. When a square wave signal is applied, the EWOD device generates asymmetric electro-wetting force that can drive a droplet to move in a specific direction.
 One of the main factors that affects droplet dynamic motion is the droplet oscillation behaviors. In this study, different resonant mode frequencies of a sessile droplet are first analyzed. It is found that the resonant modes that can happen on horizontal or inclined planes are the even number modes only for EWOD actuation. Odd number modes cannot exist. The droplet moving speed on an inclined plane has been also studied. The droplet moving speeds at resonant modes are higher than those not at resonant modes. In addition, the highest sliding velocity and the droplet dynamic “Stick-Slip” motion are found at the resonant mode n=2. By analyzing the droplet motion on a plane with inclined angle of 25°. This study proves that resonant dynamics of a droplet significantly affects behaviors of the droplet movement, as well as its sliding velocity.
論文目次 摘要 I
AbstractII
誌謝 VIII
目錄 IX
表目錄 XIV
圖目錄 XV
符號表 XXII
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-2-1 電濕潤效應的應用 2
1-2-2 電極設計與液滴驅動機制 3
1-2-3 液滴驅動之遲滯力 6
1-2-4 振動對液滴驅動之影響 7
1-3 研究動機與目的 10
第二章 原理分析 21
2-1 表面張力定義 21
2-2 毛細長度定義 21
2-3 球缺液滴定義 22
2-3-1 球缺液滴外形 22
2-3-2 接觸角 22
2-3-3 球缺液滴表面周長 23
2-3-4 球缺液滴共振現象與表面周長的關係 23
2-3-5 球缺液滴之共振頻率 25
2-4 表面濕潤度定義 27
2-4-1 Lippmann’s Equation 27
2-4-2 改變液滴接觸角的因子 28
2-5 電濕潤原理 29
2-5-1 單電極電濕潤現象 Simple electrode-wetting 29
2-5-2 共平面電極電濕潤 Coplanar electrode-wetting 30
2-6 電濕潤電容原理 30
2-6-1 單電極電容造成之表面張力 30
2-6-2 共平面式三電極電容造成之表面張力 31
2-6-3 水平方向共平面電極電濕潤力 32
2-7 液滴遲滯力 33
第三章 梯度電濕潤電極之設計與製作 39
3-1 梯度電極設計目標及原理 39
3-2 電濕潤電極設計與力分析方法 39
3-2-1 梯度電濕潤電極尺寸 40
3-2-2 水平驅動力 分析之函數定義 40
3-2-3 水平驅動力 理論分析結果 42
3-2-4 垂直驅動力 分析之原理說明 46
3-2-5 垂直驅動力 分析之函數定義 47
3-2-6 垂直驅動力 之分析結果 48
3-3 電濕潤驅動晶片的陣列 49
3-4 電濕潤驅動晶片製作 50
3-4-1 晶片清潔 50
3-4-2 金屬薄膜沈積 50
3-4-3 黃光微影製程 51
3-4-4 金屬蝕刻製程 52
3-4-5 介電薄膜製作 52
3-4-6 表面疏水層製作 53
第四章 實驗設計與方法 61
4-1 梯度電濕潤電極驅動效果實驗 61
4-2 電濕潤電極對於液滴振動模態實驗 61
4-3 電濕潤驅動液滴於斜面移動速度量測 62
4-4 實驗儀器與影像處理軟體 62
4-4-1 訊號產生器 (Signal Generator) 62
4-4-2 訊號放大器 (Signal Amplifier) 62
4-4-3 示波器 (Oscilloscope) 63
4-4-4 高速攝影機 (High speed camera) 63
4-4-5 威力導演 (Power Director) 63
第五章 結果與討論 72
5-1 梯度電濕潤電極驅動效果驗證結果 72
5-2 電濕潤電極對於液滴振動模態實驗 73
5-3 電濕潤驅動液滴於斜面移動速度量測 74
5-4 液滴於斜面之動態行為探討 75
5-4-1 液滴於斜面上的重力與遲滯力的關係 76
5-4-2 液滴於斜面上的電濕潤效應反應時間量測 77
5-4-3 液滴於斜面上的彈性收縮時間預測 78
5-4-4 液滴於斜面上的自由收縮時間量測 80
5-5 液滴於斜面之動態行與移動速度的關係 81
第六章 結論與未來工作 107
6-1 結論 107
6-2 未來工作 108
參考文獻 109

參考文獻 【1】C.H. Yung, “Experimental Study of Condensation Heat Transfer by Using Electrowetting Techniques”, National Cheng Kung University, Taiwan, pp.1-90, 2012
【2】X.W. Chen, “Enhancement of Condensation Heat Transfer by using Optimized Asymmetric Coplanar EWOD Electrode Design”, National Cheng Kung University, Taiwan, 2014
【3】M. Washizu, “Electrostatic Actuation of Liquid Droplets for Microreactor Applications”, Journal of IEEE Transactions on Industry Applications, Vol.34, pp. 732-737, 1998
【4】S. K. Cho, H. Moon, C. J. Kim, “Creating, Transporting, Cutting, and Merging Liquid Droplets by Electrowetting-Based Actuation for Digital Microfluidic Circuits”, Journal of Microelectromechanical Systems, Vol. 12, pp. 70-80, 2003.
【5】U. C. Yi, C. J. Kim, “Characterization of electrowetting actuation on addressable single-side coplanar electrodes”, Journal of Micromechanics and Microengineering”, Vol.16, pp. 2053-2059,2006
【6】U. C. Yi, C. J. Kim, “EWOD Actuation with Electrode-free Cover Plate”, The 13th International Conference on Soild-State Sensors, Vol.1, pp. 89-92, 2005.
【7】M. G. Pollack, A. D. Shenderov, R. B. Fair, “Electrowetting-based actuation of droplets for integrated microfluidics”, Lab Chip, Vol.2, pp. 96-101, 2002.
【8】T. T. Wang, P. W. Huang, S. K. Fan, “Droplets Oscillation and Continuous Pumping by Asymmetric Electrowetting”, The 19th IEEE International Conference on Micro Electro Mechanical Systems, pp. 174-177, 2006.
【9】T. Yasuda , K. Imamura, “Bidirectional Droplet Transportation Using EWOD-Induced Wettability Gradient”, The 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences, pp. 393-395, 2010
【10】S. Daniel, M. K. Chaudhury, “Rectified Motion of Liquid Drops on Gradient Surfaces Induced by Vibration”, Langmuir, Vol.18, pp. 3404-3407, 2002.
【11】H. B. Eral, D. J. C. M. ’t Mannetje, J. M. Oh, “Contact angle hysteresis: a review of fundamentals and applications”, Colloid and polymer science, Vol.291, pp. 247-260, 2012.
【12】W. C. Nelson, P. Sen, C. J. Kim, “Dynamic Contact Angles and Hysteresis under Electrowetting on Dielectric”, Langmuir., Vol.27, pp. 10319-10326, 2012
【13】Y. Xiu, L. Zhu, D. W. Hess, C. P. Wong, “Relationship between Work of Adhesion and Contact Angle Hysteresis on Superhydrophobic Surfaces”, The Journal of Physical Chemistry C, Vol.112, pp. 11403-11407, 2008
【14】R. Malka, Y. Fouillet, L. Davoustb, “Rotating flow within a droplet actuated with AC EWOD”, Sensors and Actuators B, Vol.154, pp. 191-198, 2011
【15】D. J. C. M. ‘t Mannetje, C. U. Murade, D. van den Ende, F. Mugele, “Electrically assisted drop sliding on inclined planes”, Applied Physics Letters, Vol.98, pp. 014102-1, 2011.
【16】P. Brunet, J. Eggers, R.D. Deegan, “Motion of a drop driven by substrate vibrations”, The European Physical Journal Special Topics, Vol.166, pp. 11-14, 2009
【17】S. Daniel, M. K. Chaudhury, P.G. de Gennes, “Vibration Actuated Drop Motion on Surfaces for Batch Microfluidic Processes”, Langmuir,Vol.21, pp. 4240-4248, 2005
【18】J. Hong, S. J. Lee, B. C. Koo, Y. K. Suh, K. H. Kang, “Size Selective Sliding of Sessile Drops on a Slightly Inclined Plane Using Low-Frequency AC Electrowetting”, Langmuir, Vol.28, pp. 6307-6312, 2012
【19】X. Noblin, A. Buguin, F. B. Wyart, “Vibrated sessile drops: Transition between pinned and mobile contact line oscillations”, The European Physical Journal E, Vol.14, pp. 395-404 ,2004
【20】J. S. Sharp, D. J. Farmer, J. Kelly, “Contact Angle Dependence of the Resonant Frequency of Sessile Water Droplets”, Langmuir, Vol.27, pp. 9367-9371,2011
【21】A. Torkkeli, “Droplet microfluidics on a planar surface”, Technical Research Centre of Finland, Finland, pp.1-194, Espoo, 2003.
【22】J. M. Oh, S. H. Ko, K. H. Kang, “Analysis of electrowetting -driven spreading of a drop in air”, Physics of Fluids, Vol 22, pp. 032002-1, 2010
【23】G. Lippmann, “Relation between electrical phenomena and capillaries”, Annales de Chimie et de Physique, Vol.5, pp. 494-549,1875
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-07-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-07-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw