進階搜尋


下載電子全文  
系統識別號 U0026-2107201609034300
論文名稱(中文) 相依多重競爭失效模式之維護成本分析
論文名稱(英文) Maintenance Cost Analysis for Systems Subject to Multiple Dependent Competing Failure Processes
校院名稱 成功大學
系所名稱(中) 工業與資訊管理學系
系所名稱(英) Department of Industrial and Information Management
學年度 104
學期 2
出版年 105
研究生(中文) 李秉鍵
研究生(英文) Bing-Jian Li
電子信箱 foxboy0719@gmail.com
學號 R36031204
學位類別 碩士
語文別 中文
論文頁數 61頁
口試委員 指導教授-張秀雲
口試委員-葉丁鴻
口試委員-陳明德
中文關鍵字 週期性檢查  週期性預防保養  相依多重競爭失效模式  可靠度 
英文關鍵字 Periodic inspection  Periodic preventive maintenance  Multiple dependent competing failure processes  Reliability 
學科別分類
中文摘要 過去討論預防保養與多重失效模式的論文多假設隨機衝擊僅會單方面使退化程度上升,該假設雖然會使推導容易許多,但在現實面看來並不合理,系統隨著退化程度的上升其發生隨機衝擊的機會也會變高,故本研究以相依多重競爭失效模式為基礎,設定隨機衝擊規模大小對總退化的影響程度有關,且隨機衝擊發生頻率也會受總退化程度影響之假設,進行維護成本分析。
因隨機衝擊與總退化程度互相影響的假設無法以數學模式推導,本研究以模擬的方式產生失效時點,將產生的數據分別以定期檢查與週期性預防保養做成本分析,最後透過案例研究參考微電機系統之參數設定,由案例分析可知本研究之模擬演算法能完整模擬案例,再由失效門檻值、隨機衝擊發生頻率以及成本三方面進行敏感度分析,提供製造商在進行定期檢查或預防保養時能更加了解相關資訊。
結果顯示在週期性檢查時軟失效門檻值的高低對週期檢查策略的成本影響較不顯著,而較高的隨機衝擊發生頻率與檢查成本則會增加檢查策略的成本;在週期性預防保養時隨著軟失效門檻值的提高,最佳保養成本會降低,而較高的隨機衝擊發生頻率與置換成本則會增加保養策略的成本。

英文摘要 This study investigates the effects that the degree of the total degradation has on the occurrence frequency of random shocks based on the multiple dependent competing failure processes (MDCFP) to obtain the optimal preventive maintenance strategy. Research on preventive maintenance and multiple failure modes mostly assumed that the occurrence frequency of random shocks is independent of the degree of degradation. However, such an assumption is not practical in reality. This study uses a simulation method to generate the failure times and then adopts the generated failure times to obtain the optimal periodical inspection and preventive maintenance strategies. We also perform a sensitivity analysis by using the data of a micro-electro-mechanical system. The obtained results indicate that regarding to the periodical inspection, the low occurrence frequency of random shocks and inspection cost can effectively decrease the long-run maintenance cost. Moreover, with regard to the periodical preventive maintenance, the high soft failure threshold, low occurrence frequency of random shocks, and replacement cost can effectively reduce the long-run maintenance cost.
論文目次 摘要 i
Extended Abstract ii
誌謝 vi
目錄 vii
圖目錄 x
表目錄 xi
第一章 緒論 1
第一節 研究背景 1
第二節 研究動機 2
第三節 研究目的 3
第四節 論文架構 4
第二章 文獻探討 6
第一節 失效模式 6
一、 單一退化失效模式 6
二、 多重競爭失效模式 7
三、 相依多重競爭失效模式 8
第二節 預防保養策略 9
一、 週期性預防保養 10
二、 非週期性預防保養 11
三、 條件式預防保養 11
第三節 小結 13
第三章 失效模型與維護策略 14
第一節 問題描述 14
第二節 研究流程 19
第三節 模式建構 20
一、 相依多重競爭失效模式 21
二、 週期性檢查成本分析 27
三、 週期性保養成本分析 30
第四章 應用分析 33
第一節 案例分析 33
一、 模擬結果與Peng et al.(2011)比較分析 34
二、 相依多重競爭失效模式之結果分析 39
三、 週期性檢查結果分析 41
四、 週期性保養結果分析 42
第二節 週期性檢查敏感度分析 43
一、 軟失效門檻值與最佳週期性檢查策略之分析 44
二、 隨機衝擊發生頻率範圍與最佳週期性檢查策略之分析 46
三、 檢查成本與最佳週期性檢查策略之分析 47
第三節 週期性保養敏感度分析 49
一、 軟失效門檻值與最佳週期性保養策略之分析 49
二、 隨機衝擊發生頻率與最佳週期性保養策略之分析 51
三、 置換成本與最佳週期性保養策略之分析 52
第五章 結論與建議 55
第一節 研究貢獻 55
第二節 研究限制 56
第三節 未來研究方向 56
參考文獻 58

參考文獻 中文部分:
邱尚弘(2013),「考量具相依多重競爭失效模式之條件式預防保養策略」,國立成功
大學工業與資訊管理學系碩士論文。
施博穎(2014),「具相依多重競爭失效過程系統之最佳化設計與保固期內之預防保養
策略」,國立成功大學工業與資訊管理學系碩士論文。

英文部分:
Bartholomew-Biggs, M., Zuo, M. J. & Li, X. (2009). Modelling and optimizing sequential imperfect preventive maintenance. Reliability Engineering and System Safety, 94(1), 53-62.
Castro, I. T., Caballé, N. C. & Pérez, C. J. (2015). A condition-based maintenance for a system subject to multiple degradation processes and external shocks. International Journal of Systems Science, 46(9), 1692-1704.
Chaudhuri, D. & Sahu, K. C. (1977). Preventive Maintenance Interval for Optimal Reliability of Deteriorating System. IEEE Transactions on Reliability, 26(5), 371-372.
Chen, J. A., & Chien, Y. H. (2007). Renewing warranty and preventive maintenance for products with failure penalty post-warranty. Quality and Reliability Engineering International, 23, 107-121.
Chriter, A. H. & Wang, W. (1992). A model of condition monitoring of a production plant. International Journal of Production Research, 30(9), 2199-2211.
Grall, A., Dieulle, L., Bérenguer, C., & Roussignol, M. (2002). Continuous-time predictive-maintenance scheduling for a deteriorating system. IEEE Transactions on Reliability, 51(2), 141-150.
Huang, W. & Askin, R.G. (2003). Reliability analysis of electronic devices with multiple competing failure modes involving performanceaging degradation. Quality and Reliability Engineering International, 19, 241-254.
Lam, C. T. & Yeh, R. H. (1994). Optimal maintenance-policies for deteriorating systems under various maintenance strategies. IEEE Transactions on Reliability, 43(3), 423-430.
Li, G. & Lou, J. (2005). Shock model in Markovian environment. Naval Research Logistics, 52(3), 253–260.
Liao, W., Pan, E. & Xi, L. (2010). Preventive maintenance scheduling for repairable system with deterioration. Journal of Intelligent Manufacturing, 21(6), 875-884.
Lin, D., Zuo, M. J. & Yam, R. C. M. (2001). Sequential imperfect preventive maintenance models with two categories of failure modes. Naval Research Logistics, 48(4), 172-183.
Lin, D., Zuo, M. J., Yam, R. C. M. & Meng, Max Q.-H. (2000). Optimal system design considering warranty, periodic preventive maintenance, and minimal repair. The Journal of the Operational Research Society, 51(7), 869-874.
Lin, Z. L. & Huang, Y. S. (2010). Nonperiodic preventive maintenance for repairable systems. Naval Research Logistics, 57, 615-625.
Liu, Y., Huang, H. Z. & Pham, H. (2008). Reliability evaluation of systems with degradation and random shocks. Reliability and Maintainability Symposium, 328-333.
Malik, M. A. K. (1979). Reliable preventive maintenance scheduling. AIIE Transactions, 11(3), 221-228.
Nakagawa, T. (1986). Periodic and sequential preventive maintenance policies. Applied Probability Trust, 23, 536-542.
Nakagawa, T. (1988). Sequential imperfect preventive maintenance policies. IEEE Transactions on Reliability, 37(3), 295-298.
Panagiotidou, S. & Tagaras, G. (2007). Optimal preventive maintenance for equipment with two quality states and general failure time distributions. European Journal of Operational Research, 180 , 329-353.
Peng, H., Feng, Q. & Coit D. W. (2011). Reliability and maintenance modeling for systems subject to multiple dependent competing failure processes. IIE Transactions on Operations Engineering, 43(1), 12-22.
Rafiee, K., Feng, Q. & Coit D. W. (2014). Reliability modeling for dependent competing failure processes with changing degradation rate. IIE Transactions on Operations Engineering, 46, 483–496.
Segawa, Y., Ohnishi, M. & Ibaraki, T. (1992). Optimal minimal-repair and replacement problem with age dependent cost structure. Computers & Mathematics with Applications, 24, 91-101.
Sheu, S. H. & Chang C. C. (2009). An extended periodic imperfect preventive maintenance model with age-dependent failure type. IEEE Transactions on Reliability, 58(2), 397-405.
Song, S., Coit D. W., Feng, Q. & Peng, H. (2014). Reliability analysis for multi-component systems subject to multiple dependent competing failure processes. IEEE Transactions on Reliability, 63(1), 331-345.
Tanner, D.M. & Dugger, M.T. (2003). Wear mechanisms in a reliability methodology. Proceeding of the Society of Photo-ophical Instrumentation Engineers, 4980, 22–40.
Wang, G. J. & Zhang, Y. L. (2005). A shock model with two-type failures and optimal replacement policy. International Journal of Systems Science, 36(4), 209-214.
Wu, S. & Zuo, M. J. (2010). Linear and nonlinear preventive maintenance models. IEEE Transactions on Reliability, 59(1), 242-249.
Zequeira, R. I. & Be´renguer, C. (2005). Periodic imperfect preventive maintenance with two categories of competing failure modes. Reliability Engineering and System Safety, 91(4), 460–468.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-07-19起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-07-19起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw