進階搜尋


下載電子全文  
系統識別號 U0026-2107201500045100
論文名稱(中文) 電動搬運載具用非接觸式條帶型感應供電軌道系統之研製
論文名稱(英文) Design and Implementation of Contactless Strip-Type Inductive Power Track System for Electric Transport Vehicles
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 103
學期 2
出版年 104
研究生(中文) 張雅婷
研究生(英文) Ya-Ting Chang
學號 N26024278
學位類別 碩士
語文別 中文
論文頁數 92頁
口試委員 口試委員-林法正
口試委員-白富升
口試委員-張簡樂仁
指導教授-李嘉猷
中文關鍵字 線型感應供電軌道  條帶型感應供電軌道  電能拾取器 
英文關鍵字 Linear inductive power track  Strip-type inductive power track  Power pickup 
學科別分類
中文摘要 本論文旨在針對自動化製造生產線常用之纜線型感應供電軌道,研製電動搬運載具用非接觸式條帶型感應供電軌道,文中研提之條帶型軌道與傳統纜線型軌道差異處,在於採條帶型感應供電軌道是以平面延伸封閉線圈方式繞製,可使供電軌道呈面向磁通放射得以改善纜線型切面式磁場分佈問題,於相同軌道長度及激勵電流下,能有效提升磁通放射強度。電能拾取器則配合條帶型軌道面向磁通放射型態,以類緊密耦合變壓器型式進行感應耦合鐵芯設計,使電能拾取器於供電軌道中移動時可維持緊密耦合特性。接著由理論分析諧振架構,提升供電軌道傳輸能力及效率。最後經由實驗量測結果得知,整體系統最大輸出功率為1064W,最高電能傳輸效率約71.9%。
英文摘要 The purpose of this thesis is to design and implement contactless strip-type inductive power track system for electric transport vehicles in automated production line system. The main feature of the proposed strip-type inductive power track is wounded linearly by a plurality of planar coils. Hence, the flux emission ability of the power track can be enhanced in the identical length and current of the track. According to the transformer, the core structure of the pickup is optimized with the proposed strip-type inductive power track. During the pickup moving along the track, it can maintain the behavior of tight-coupling. Theory and analysis of the resonant circuit are utilized for improving the power transmission ability and efficiency. According to the experimental result, the maximum power output of overall systems is 1064W and the highest power transmission efficiency is about 71.9%.
論文目次 中文摘要 I
英文摘要 II
英文延伸摘要 III
誌謝 VII
目錄 VIII
表目錄 XI
圖目錄 XII
第一章 緒論 1
1-1 研究背景與目的 1
1-2 非接觸式線型感應供電軌道之應用 4
1-3 研究方法 7
1-4 論文大綱 9
第二章 非接觸式感應電能傳輸系統原理 10
2-1 前言 10
2-2 非接觸式感應電能傳輸技術 10
2-2-1 感應線圈磁場分佈特性 11
2-3 感應線圈之非理想效應 13
2-3-1 集膚效應 13
2-3-2 近接效應 15
2-4 非接觸式感應供電軌道耦合結構 16
2-4-1 感應供電軌道 17
2-4-2 電能拾取器 18
2-4-3 磁性材料 19
2-5 非接觸式感應電能傳輸耦合原理 21
2-6 非接觸式線型感應供電軌道系統耦合原理 23
第三章 感應耦合結構模擬及諧振電路分析 26
3-1 前言 26
3-2 感應耦合結構模擬及分析 26
3-2-1 條帶型感應供電軌道設計 26
3-2-2 軌道線圈磁場模擬及分析 31
3-2-3 電能拾取器磁場模擬及分析 36
3-2-4 電能拾取器結構導磁材料之磁路分析 38
3-3 諧振電路分析 40
3-3-1 RLC諧振電路分析 40
3-3-2 諧振電路拓樸架構 43
3-3-3 初級側諧振電路分析 44
3-3-4 次級側諧振電路分析 46
3-3-5 次級側反射阻抗與傳輸效率分析 47
3-3-6 品質因數 53
第四章 條帶型感應供電軌道系統電路 55
4-1 前言 55
4-2 整體系統電路架構 55
4-3 條帶型感應軌道耦合結構製作 56
4-3-1 條帶型供電軌道 59
4-3-2 電能拾取器 60
4-4 供電軌道電路 62
4-5 電能拾取器電路 64
4-5-1 整流濾波電路 65
4-5-2 降壓轉換電路 66
4-6 非接觸式條帶型感應供電軌道系統設計流程 69
第五章 系統模擬與實驗結果 72
5-1 前言 72
5-2 Simplis電路模擬 72
5-3 系統規格與硬體電路 74
5-4 系統實驗結果與波形量測 76
5-4-1 整體系統量測 76
5-4-2 降壓轉換電路量測 79
5-4-3 整體系統最大輸出功率及最高傳輸效率量測 81
第六章 結論與未來研究方向 85
6-1 結論 85
6-2 未來研究方向 86
參考文獻 87
參考文獻 [1] Effenberger, “Inductive energy transfer on the move,” INTIS., Germany, 2014.
[2] I. Aydin, M. Karakose, and E. Akin, “A new contactless fault diagnosis approach for pantograph-catenary system,” in Proc. MECHATRONIKA, 2012, pp.1-6.
[3] V. Prasanth and P. Bauer, “Distributed IPT systems for dynamic powering: misalignment analysis,” IEEE Trans. Ind. Electron., vol. 61, no. 11, pp. 6013-6021, Nov. 2014.
[4] K. W. Klontz, A. Esser, R. R. Bacon, D. M. Divan, D. W. Novotny, and R. D. Lorenz, “An electric vehicle charging system with universal inductive interface,” in Proc. PCCON, 2002, pp. 227-232.
[5] Schoneberger, “Primove contactless and catenary-free operation,” Bombardier Inc., 10832/SYS/09- 2010/en, Canada, 2010.
[6] “IPT charge for electric vehicles,” Conductix-Wampfler delachaux group, Germany, KAT9200-0001-E, 2009.
[7] Kamen, “Contactless Power System,” Vahle Corp., Germany, Nr. 9d/EN, Nov. 2008.
[8] “Corporate profile,” Daifuku Corp., Japan, CP13E, 2013.
[9] “非接觸供電,” AMIDOF Corp., Taiwan, NCPT, 2005.
[10] J. P. C. Smeets, T. T. Overboom, J. W. Jansen, and E. A. Lomonova, “Mode-matching technique applied to three-dimensional magnetic field modeling,” IEEE Trans. Magn., vol. 48, no. 11, pp. 3383-3386, Nov. 2012.
[11] J. P. C. Smeets, T. T. Overboom, J. W. Jansen, and E. A. Lomonova, “Modeling framework for contactless energy transfer systems for linear actuators,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 391-399, Jan. 2013.
[12] J. P. C. Smeets, T. T. Overboom, J. W. Jansen, and E. A. Lomonova, “Comparison of position-independent contactless energy transfer systems,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 2059-2067, Apr. 2013.
[13] W. Zhang, S. C. Wong, C. K. Tse, and Q. Chen, “Design for efficiency optimization and voltage controllability of series-series compensated inductive power transfer systems,” IEEE Trans. Power Electron., vol. 29, no. 1, pp. 191-200, Jan. 2014.
[14] W. Zhang, S. C. Wong, C. K. Tse, and Q. Chen, “Analysis and comparison of secondary series- and parallel-compensated inductive power transfer systems operating for optimal efficiency and load-independent voltage-transfer ratio,” IEEE Trans. Power Electron., vol. 29, no. 6, pp. 2979-2990, June 2014.
[15] J. Hou, Q. Chen, X. Ren, X. Ruan, S. C. Wong, and C. K. Tse, “Precise characteristics analysis of series series-parallel compensated contactless resonant converter,” IEEE J. Emerging Select. Topics Power Electron., vol. 3, no. 1, p. 101-110, May 2015.
[16] H. Matsumoto, Y. Neba, K. Ishizaka, and R. Itoh, “Model for a three-phase contactless power transfer system,” IEEE Trans. Power Electron., vol. 26, no. 9, pp. 2676-2687, Sep. 2011.
[17] H. Matsumoto, Y. Neba, K. Ishizaka, and R. Itoh, “Comparison of characteristics on planar contactless power transfer systems,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2980-2993, June 2012.
[18] H. Matsumoto, Y. Neba, H. Iura, D. Tsutsumi, K. Ishizaka, and R. Itoh, “Trifoliate three-phase contactless power transformer in case of winding-alignment,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 53-62, Jan. 2014.
[19] G. A. Covic and J. T. Boys, “Inductive power transfer,” in Proc. IEEE, vol. 101, no. 6, pp. 1276-1289, Jan. 2013.
[20] S. Raabe, J. T. Boys, and G. A. Covic, “A high power coaxial inductive power transfer pickup,” in Proc. IEEE PESC, 2008, pp. 4320-4325.
[21] G. A. Covic, J. T. Boys, M. L. G. Kissin, and H. G. Lu, “A three-phase inductive power transfer system for roadway-powered vehicles,” IEEE Trans. Ind. Electron., vol. 54, no. 6, pp. 3370-3378, Dec. 2007.
[22] M. L. G. Kissin, H. Hao, and G. A. Covic, “A practical multiphase IPT system for AGV and roadway applications,” in Proc. IEEE ECCE, 2010, pp. 1844-1850.
[23] M. L. G. Kissin, G. A. Covic, and J. T. Boys, “Steady-state flat-pickup loading effects in polyphase inductive power transfer systems,” IEEE Trans. Ind. Electron., vol. 58, no. 6, pp. 2274-2282, Jun. 2011.
[24] C. Liu, A. P. Hu, G. A. Covic, and N. C. Nair, “Comparative study of CCPT systems with two different inductor tuning positions,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 294-306, Jan. 2012.
[25] S. Raabe and G. A. Covic, “Practical design considerations for contactless power transfer quadrature pick-ups,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 400-409, Jan. 2013.
[26] C. Y. Huang, J. T. Boys, and G. A. Covic, “LCL pickup circulating current controller for inductive power transfer systems,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 2081-2093, Apr. 2013.
[27] C. S. Wang, G. A. Covic, and O. H. Stielau, “Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems,” IEEE Trans. Ind. Electron., vol. 51, no. 6, pp. 148-157, Feb. 2004.
[28] C. S. Wang, O. H. Stielau, and G. A. Covic, “Design considerations for a contactless electric vehicle battery charger,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1308-1314, Oct. 2005.
[29] H. H. Wu, G. A. Covic, J. T. Boys, and D. J. Robertson, “A series-tuned inductive-power-transfer pickup with a controllable AC-voltage output,” IEEE Trans. Power Electron., vol. 26, no. 1, pp. 98-109, Jan. 2011.
[30] H. L. Li, A. P. Hu, and G. A. Covic, “A direct AC-AC converter for inductive power-transfer systems,” IEEE Trans. Power Electron., vol. 27, no. 2, pp. 661-668, Feb. 2012.
[31] J. E. James, D. Robertson, and G. A. Covic, “Improved AC pickups for IPT systems,” IEEE Trans. Power Electron., vol. 29, no. 12, pp. 6361-6374, Dec. 2014.
[32] J. E. James, J. T. Boys, and G. A. Covic, “A variable inductor based tuning method for ICPT pickups,” in Proc. IEEE IPEC, 2005, pp. 1142-1146.
[33] M. Zaheer, N. Patel, and A. P. Hu, “Parallel tuned contactless power pickup using saturable core reactor,” in Proc. IEEE ICSET, 2010, pp. 1-6.
[34] J. U. W. Hsu, A. P. Hu, and A. Swain, “Fuzzy logic-based directional full-range tuning control of wireless power pickups,” IEEE Trans. Power Electron., vol. 5, no. 6, pp. 773-781, Jul. 2012.
[35] H. Hao, G. A. Covic, and J. T. Boys, “A parallel topology for inductive power transfer power supplies,” IEEE Trans. Power Electron., vol. 29, no. 3, pp. 1140-1151, Mar. 2014.
[36] L. J. Chen, J. T. Boys, and G. A. Covic, “Power management for multiple-pickup IPT systems in materials handling applications,” IEEE Trans. Power Electron., vol. PP, no. 99, pp. 1-13, Apr. 2014.
[37] S. Choi, J. Huh, W. Y. Lee, S. W. Lee, and C. T. Rim, “New cross-segmented power supply rails for roadway-powered electric vehicles,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5832-5841, Dec. 2013.
[38] C. Park, S. Lee, G. H. Cho, S. Y. Choi, and C. T. Rim, “Two-dimensional inductive power transfer system for mobile robots using evenly displaced multiple pickups,” IEEE Trans. Ind. Appl., vol. 50, no. 1, pp. 558-565, Jan. 2014.
[39] S. Y. Choi, J. Huh, W. Y. Lee, and C. T. Rim, “Asymmetric coil sets for wireless stationary EV chargers with large lateral tolerance by dominant field analysis,” IEEE Trans. Power Electron., vol. 29, no. 12, pp. 6406-6420, Dec. 2014.
[40] S. Y. Choi, B. W. Gu, S. W. Lee, W. Y. Lee, J. Huh, and C. T. Rim, “Generalized active EMF cancel methods for wireless electric vehicles,” IEEE Trans. Power Electron., vol. 29, no. 11, pp. 5770-5783, Nov. 2014.
[41] C. Park, S. Lee, G. H. Cho, and C. T. Rim, “Innovative 5-m-off-distance inductive power transfer systems with optimally shaped dipole coils,” IEEE Trans. Power Electron., vol. 30, no. 2, pp. 817-827, Feb. 2015.
[42] S. Y. Choi, B. W. Gu, S. Y. Jeong, and C. T. Rim, “Advances in wireless power transfer systems for roadway-powered electric vehicles,” IEEE J. Emerging Select. Topics Power Electron., vol. 3, no. 1, p. 18-36, Mar. 2015.
[43] S. Chopra, V. Prasanth, B. E. Mansouri, and P. Bauer, “A contactless power transfer-supercapacitor based system for EV application,” in Proc. IEEE 38th Annu. Conf. Ind. Electron. Soc., 2012, pp. 2860-2865.
[44] F. van der Pijl, P. Bauer, and M. Castilla, “Control method for wireless inductive energy transfer systems with relatively large air gap,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 382-390, Jan. 2013.
[45] S. Chopra and P. Bauer, “Driving range extension of EV with on-road contactless power transfer--a case study,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 329-338, Jan. 2013.
[46] 詹凱筌,具可拆卸機制封閉式耦合結構之非接觸式線型感應饋電軌道系統,國立成功大學電機工程學系碩士論文,2012年。
[47] 張華敬,電動搬運載具用非接觸式三相線型感應供電軌道系統之研製,國立成功大學電機工程學系碩士論文,2013年。
[48] 楊昆翰,非接觸式片狀感應供電軌道系統之研製,國立成功大學電機工程學系碩士論文,2014年。
[49] J. T. Boys, G. A. J. Elliott, and G. A. Covic, “An appropriate magnetic coupling co-efficient for the design and comparison of ICPT pickups,” IEEE Trans. Power Electron.,vol. 22, no. 1, pp. 333-335, Jan. 2007.
[50] G. A. Covic, G. Elliott, O. H. Stielau, R. M. Green, and J. T. Boys, “The design of a contact-less energy transfer system for a people mover system,” in Proc. International Conference on Power System Technology, 2000, pp. 79-84.
[51] J. T. Boys, G. A. Covic, and A. W. Green, “Stability and control of inductively coupled power transfer systems,” IEEE Proc. Elect. Power Appl., vol. 147, no. 1, pp. 37-43, Jan. 2000.
[52] K. W. Klontz, D. M. Divan, D. W. Novotny, and R. D. Lorenz, “Contactless power delivery system for mining applications,” IEEE Trans. Ind. Appl., vol. 31, no. 1, pp. 27-35, Feb. 1995.
[53] UCC3895 Data Sheet, Texas Instruments Inc., 2013.
[54] TL494 Data Sheet, Texas Instruments Inc., 2014.
[55] IR2117 Data Sheet, International Rectifier Corp., 2004.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-08-06起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-08-06起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw