進階搜尋


下載電子全文  
系統識別號 U0026-2107201418332300
論文名稱(中文) 量子點敏化光電極在太陽能轉換之應用-評論與應用實例
論文名稱(英文) Quantum Dot-Sensitized Photoelectrodes for Solar Energy Conversion: Review and Application Examples
校院名稱 成功大學
系所名稱(中) 化學工程學系
系所名稱(英) Department of Chemical Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 林耀加
研究生(英文) Yao-Chia Lin
學號 N36014097
學位類別 碩士
語文別 英文
論文頁數 158頁
口試委員 指導教授-鄧熙聖
口試委員-楊明長
口試委員-許梅娟
口試委員-蔡建成
中文關鍵字 量子點光電極光電轉換元件探討  硫/硒化鎘量子點  敏化太陽能電池 
英文關鍵字 review of QD-based optoelectronic devices  CdSxSe1-x QDs  sensitized solar cell 
學科別分類
中文摘要 全球能源危機所帶來對於乾淨的綠能需求目前已成了全世界最重要的一個課題,而以光伏或光電化學反應來將太陽光轉換為電力,亦即太陽能發電,也漸漸地被投入開發。從第一代及第二代太陽能電池蓬勃發展之後,以單晶矽或多晶矽等薄膜所形成之太陽能電池已經廣泛應用在太陽能電池的商業市場上,但因為其普遍成本偏高、且對於其製程的要求也非常嚴格,因此這類型為主的太陽能電池尚未能作為供應能源的取代。隨著第三代太陽能電池的發展,除了以染料分子之外,應用量子點半導體材料作為吸光敏化劑也成了目前最具潛力吸光材料。
於本文的研究中,主要在於探討和討論量子點相關光電轉換元件,如量子點敏化太陽能電池、膠體量子點薄膜太陽能電池以及以量子點應用於電化學分解水產氫等元件。而選擇量子點來作為吸光敏化劑的原因在於,其本身的電性會隨著粒徑大小、形狀、組成及其他元素參雜而有所改變,而藉此便可選擇出最適合電性之量子點來應用於太陽能電池,且多重激子產生的特性使其可突破傳統理論效率,並有機會能達到高效能之轉化效率。而太陽能電池或是光電極分解水產氫的結構中皆包含了金屬氧化物半導體(電子傳輸)、量子點敏化劑、電解質(電洞傳輸)以及對電極,每一部分皆會影響其最後效率的表現,而在各個文獻中,藉由探討各種具有潛力的量子點材料,並找出最適合的結構來幫助電子傳輸並避免電子電洞再結合,在量子點太陽能電池的相關文獻中已有可達到8.5%效率的表現,也漸漸接近染料敏化太陽能電池的效率(12%)。
最後,我們採用了硫/硒化鎘複合量子點來作為敏化劑並組成太陽能電池。並從實驗中去探討多硫電解質的濃度和添加物以及藉由鎘離子的表面處理,來達到高效率的量子點敏化太陽能電池。而在最適化之後對於液態太陽能電池其效率可達到5.34%,然而固態太陽能電池目前只達到0.4%。
英文摘要 SUMMARY
Quantum dot (QD) sensitized photoelectrodes have attracted great interest in the past few years. They are greatly applied not only in quantum dot sensitized solar cells but also in colloidal quantum dot thin film solar cells and photoelectrochemical (PEC) cells for water splitting. The properties such as multiple exciton generation (MEG), hot electron injection and tunable band gap are gaining momentum to overcome the efficiency limitations. Although a starting point of relatively low performing optoelectronic device, the breakthrough of QDs-based device has been witnessed for boosting conversion efficiency in just a few years. In this review, we highlight the recent evolvements achieved in surmounting the obstacles such as lower open circuit voltage (Voc) or charge recombination. With the specific investigation and innovation for main structures constructing the QDs-based devices, we anticipate the future direction with an aim to highly light to electric power conversion efficiency. And finally, we used the Cd2+ seed pre-treatment to enhance the loading of CdSxSe1-x to increase the overall power conversion efficiency to 5.3%.

Key words: review of QD-based optoelectronic devices, CdSxSe1-x QDs, sensitized solar cell

INTRODUCTION

In this brief review and article, we aim to focus on the utilization of QD-photoelectrodes in PV and PEC devices, QDSSCs, CQDs thin film solar cells and water splitting. The basic opto-electronic characteristics and mechanisms of QDs-based devices will be discussed at first. After the explicit definition and consideration, we will be absorbed in the progress on the study of these interesting and promising photoelectrodes, further to more discussion
about each part of the device structures. The literature for optimizing and engineering for QDs-based device is quite large, so we do not to cover the researches exhaustively. Finally, the pivotal path to improve the performance of QDs-based devices and the stability of QDs itself will be discussed in detail.

PRINCIPLES AND MECHANISMS

In this section, we focus on the working principle for PV and PEC devices, including QDSSCs, CQDSCs and QDs-based photoelectrode for PEC water splitting. With the promisingly optoelectronic properties in QD such as ionization impact, Auger recombination and mini-band transfer, QD materials show the potential to apply in the sensitizer in many QDs-based devices.

PROGRESS OF THE COMPONENT STRUCTURES IN QDS-BASED DEVICES

Much attention has been drawn to the development for the QDs-based PV or PEC devices. The intensive researches are concentrated on each formation of the optoelectronic devices to improve the sun-light conversion efficiency, lying primarily to the wide band gap metal oxides, QDs sensitizers, electrolytes and counter electrodes. The following investigation mainly about QDSSCs, CQDSCs and QDs-based water splitting highlights the composed structure with an aim toward highly efficient sunlight energy conversion.

At the heart of the photoelectrode is always a nanocrystalline metal oxide film. It plays a significant role to load QDs sensitizers and conduct electrons. As a wide band gap semiconductor for the QDs scaffold, the large surface area is available for QDs adsorption. Therefore, nanosized porous structure has been commonly used in QDs-based PV or PEC devices, primarily consisting of TiO2 or ZnO. Nanoparticle films offer very high surface area to extend the amount of sensitizer loading. However, unlike dye adsorption in DSSCs, larger QDs have some difficulty entering the inner pores the film. The direct exposure of the oxide film in electrolyte leads to a series degree of interfacial recombination, deteriorating the Voc. Thus, selecting a proper candidate to adsorb QDs is an important issue.

QDs-Sensitizer

There are many kinds of QDs semiconductors applying to the sensitizers on the wide band gap metal oxides. They play important roles for light absorption, charge excitation and separation. QDs semiconductors especially such as CdS, CdSe, PbS, CuInS2, Sb2S3 and their alloys with other elements have been commonly investigated for pursuit of higher power conversion efficiency. Besides the stability when immersing in electrolyte, QDs sensitizers should completely cover on all the surface of the metal oxide avoiding direct contact between metal oxide and electrolyte. Thus, the most used methods are based on increasing the coverage of QDs. All methods are mainly classified into in-situ and ex-situ ones from QDs synthesis and their incorporation into the photoactive electrode. Recently, some improvements for the doping QDs, surface treatment and combination of organic dye absorbers have become the latest trend in QD-based optoelectronic devices.

Electrolyte

In QDSSCs, the electrolyte plays a pivotal role in the rejuvenation of QDs materials by capturing the photo-generated holes. The rapid electron-transfer from electrolyte to the oxidized QDs sensitizer must be indispensable in the whole charge transfer process while having excellent long-term stability. Further, the important process includes the self-redox in the couple to deliver the hole to counter electrode. What must be significantly addressed is the Voc influenced by the potential of the redox couple. This value is corresponded to the difference between the quasi-Fermi level of metal oxide and the redox potential of the electrolyte.

Counter Electrode

In addition to the investigation of photoanodes, the performance of the QDSSCs is determined by the electrocatalytic properties and tolerance of the CEs toward the redox couples. The CE is responsible for catalysis and reduction of the oxidized redox species with the electrons transporting from the external circuit. For the polysulfide used widely in liquid state QDSSCs, besides discharging the electrons quickly, the CE must sustain in the sulfur/sulfide aqueous surrounding for a long time in pursuit of the long-term stability. Finally, the amount of the CE catalytic activity and surface area is also a crucial parameter that affects the overall performance.

STRATEGIES TO OPTIMIZE THE QD-BASED DEVICES

Although a volume of work has been conducted on the analysis of each element assembling QDs-based PV or PEC cells to enhance the sun-light conversion efficiency, there is still an obvious gap between QDSSCs and DSSCs. It is imperative that the efficiency of QDSSCs should be ~10% to make them competitive. In recent years, the efficiency has been gradually achieved to 5~7% in average for high efficiency device no matter for QDSSCs or for CQDs thin film solar cells. Accordingly, strategies for improve the performance are discussed as follow to bring the great potential of fabricating a highly efficient QD-based devices.

RESULT AND DISCUSSION

For the result and discussion, we apply the Cd2+ seed pre-treatment before SILAR process. And we observed that the cells with Cd2+ pre-treatment showed higher photocurrent, which leads the improved PCE of 5.3%. And the electrolyte condition was based on the based one with the larger alkali compound to increase the conductivity. However, the performance in solid state with CdSxSe1-x QDSSC was not as well as expected, just only 0.4%.

CONCLUSION

QDs-based photo-electrodes have emerged as the representative not only for the third generation PV devices but also for the water splitting in PEC systems. Owing to the optoelectronic properties such as multiple exciton generation (MEG), size-dependent band gap and high extinction coefficient, QDs have been the appropriate substitution for dye molecules as the photo-induced sensitizer. The QDSSCs are composed of electron acceptor, QD-sensitizer and hole acceptor which approaches to the assembly of p-i-n junction. With optimization for each element, the overall conversion efficiency has closed to 7% and have the potential to achieve 10%.
論文目次 中文摘要....................................................I
Extended Abstract........................................III
誌謝.....................................................VII
Catalogue.................................................IX
Table Catalogue..........................................XII
Figure Catalogue........................................XIII
Acronyms...............................................XVIII

Chapter 1 Introduction.....................................1
Chapter 2 Principles and Mechanisms for QDs-Based Devices..7
2-1 Performance Parameters for PV Solar Cell.......7
2-2 Performance Parameters for PEC Water
Splitting.....................................11
2-3 QDs as Sensitizers............................16
2-4 Working Mechanisms of QDs-Based Photoelectrodes
in PV and PEC Devices.........................19
2-4.1 QD Sensitized Solar Cells (QDSSCs)..19
2-4.2 Colloidal Quantum Dots (CQDs) Thin
Film Solar Cells....................23
2-4.3 QDs-Photoelectrodes Water Splitting
for Hydrogen Generation.............26
Chapter 3 Process of Component Structures in QDs-Based Devices...................................................29
3-1 Metal Oxide for Wide Band Gap Semiconductors
(Electron Acceptors)..........................29
3-1.1 Titanium Oxide (TiO2)...............30
3-1.2 Zinc Oxide (ZnO)....................35
3-1.3 Other Oxides........................39
3-1.4 Doping for Metal Oxides.............40
3-2 QDs-Sensitizers...............................43
3-2.1 Preparation and Deposition Methods
for QDs.............................56
3-2.2 Types of QDs-Materials..............70
3-2.3 Some Improvements for QDs...........82
3-3 Redox Electrolytes............................85
3-4 Counter Electrodes (CEs)......................91
Chapter 4 Strategies to Optimize the QDs-Based Devices....96
4-1 Highly-Loading Coverage of QDs on Electron
Conductor (Metal Oxide........................96
4-2 QDs Material Selection and Engineering........99
4-3 Enhanced Depletion Region for Efficient Charge
Separation...................................101
4-4 Stable Electrolyte with Lower Redox
Potential....................................102
4-5 Highly-Catalytic Counter Electrode...........103
Chapter 5 Instruments and Experimental Methods...........104
5-1 Experimental Chemicals.......................104
5-2 Experimental Instruments.....................106
5-3 Experimental Methods for QDSSCs Fabrication..107
5-3.1 Preparation of TiO2 Nano-Particle
Film...............................107
5-3.2 Preparation of TiO2/CdSxSe1-x
Photoanode.........................107
5-3.3 Preparation of PbS Counter
Electrode..........................108
5-3.4 Assembly of Liquid State CdSxSe1-x
QDSSCs.............................109
5-3.5 Assembly of Solid State CdSxSe1-x
QDSSCs.............................109
Chapter 6 Results and Discussion.........................112
6-1 The Influence of Additive in Polysulfide
Electrolyte..................................112
6-1.1 Introduction.......................112
6-1.2 Photovolaic Performance for the
Comparison.........................113
6-2 The Effect of Cd2+ Pre-treatment before
SILAR........................................115
6-2.1 Introduction.......................115
6-2.2 Photovolaic Performance for the
Comparison with Cd2+ Pre-treatment.116
6-3 Solid State CdSxSe1-x-Based QDSSCs...........118
6-3.1 Introduction.......................118
6-3.2 Photovolaic Performance for the Solid
State QDSSCs.......................119
Chapter 7 Conclusion and Outlook.........................121
Chapter 8 Reference......................................123

Table Catalogue
Table 3-1 Performance summary of QDSSCs reported in recent
literature......................................44
Table 3-2 Performance summary of CQDs thin film solar cells
reported in recent literature...................53
Table 3-3 Performance summary of QDs-based PEC cells for
water spitting reported in recent literature....54
Table 6-1 Photovoltaic parameters for different assembly of
polysulfide electrolyte based on CdSxSe1-x/ZnS
liquid QDSSCs..................................114
Table 6-2 Photovoltaic parameters for CdSxSe1-x/ZnS liquid
QDSSCs with and without the Cd2+ pre-treatment.117
Table 6-3 Photovoltaic parameters for CdSxSe1-x/ZnS solid
state QDSSCs...................................120

Figure Catalogue
Fig. 2-1 I-V curves in the fourth of a photovoltaic solar
cell depicted under illumination and dark
conditions........................................9
Fig. 2-2 Principles of water splitting using semiconductor
photocatalysts or photoelectrodes................14
Fig. 2-3 Dependence of theoretical STH and solar
photocurrent density of photoelectrodes on their
bandgap absorption edge..........................15
Fig. 2-4 Optoelectronic properties for QDs material from (a)
-(d).............................................18
Fig. 2-5 Work mechanism of quantum dot sensitized solar
cell with mesoporous metal oxide under sunlight
illumination.....................................22
Fig. 2-6 Structures and mechanisms for (a) Schottky solar
cells and (b) depleted heterojunction solar cells
.................................................25
Fig. 2-7 Work mechanism of water splitting PEC cells with
QDs-based photoelectrodes........................28
Fig. 3-1 The evolution of the sensitized solar cell.......33
Fig. 3-2 Photoinduced charge separation and transport in
(a) TiO2 particulate film and (b) TiO2 nanotube
array...........................................34
Fig. 3-3 (a)Top view SEM image of surface textured-titaium
inversed opal. (b) the surface of io-TiO2 (scale
bar: 5 μm........................................34
Fig. 3-4 (a) Schematic and (b) energy band diagram of
planar DH solar ce (c) schematic and (d) energy
band diagram an ordered bulk heterojunction (BHJ)
architecture by the solution processed ZnO
nanowires.......................................38
Fig. 3-5 Schematic electronic band structure of CdSe
nanocrystalline TiO2/N, associated with normal
TiO2 and a N dopant state........................42
Fig. 3-6 The influence with the N-doped metal oxide for
reduction of the surface state induced at the
interface (a)with the N-doping (b)without any
treatment........................................42
Fig. 3-7 The illumination of the SILAR deposition of QDs
with PbS to be example...........................60
Fig. 3-8 Schematic diagrams of (a) the surface charge of
TiO2 as a function of solution pH and (b) the
deposition processes of CdS QDs on TiO2 films
using Cd(NO3)2 and Cd(Ac)2 methanol solutions as
cationic precursors. And (c)it shows fast
deposition during the SILAR process and have more
outstanding results with Cd(Ac)2.................61
Fig. 3-9 The existing problem caused by the in-situ method
with SILAR for CdS or CBD for CdSe...............61
Fig. 3-10 (a) Linking CdSe QDs to TiO2 particle with
bifunctional surface modifier like MPA, TGA; (b)
Light harvesting assembly composed of TiO2 film
functionalized with CdSe QDs on optically
transparent electrode...........................64
Fig. 3-11 Comparison of linker exchange of larger molecule
like OA and TOPO to smaller one like MPA........65
Fig. 3-12 (a) Schematic illustration of proposed band
bending in ZnO/PbS-TBAI (left) and ZnO/PbS-
TBAI/PbS-EDT (right) devices at short-circuit
conditions. (b) The much higher efficiency
conducted with the combination of ZnO/PbS-
TBAI/PbS-EDT...................................69
Fig. 3-13 (a) Various heterostructure band alignments. (b)
The energy band alignments of the assembly with
CdS, CdSe and CdS/CdSe. (c) Inverted type I band
structure from CdS/CdSe core/shell structure....74
Fig. 3-14 (a) Cartoon of a core/shell CdTe/CdSe QD
indicating the relative position of the bands.
(b) The I-V curve with much higher efficiency of
6.76% for this CdTe/CdSe core/shell structure...75
Fig. 3-15 (a) Structure and (b) energy level alignment for
CdS/PbS depleted heterojunction solar cells. Also
the promising combination of Bi2S3/PbS has
represented in the depleted heterojunction solar
cell, which shows their (c) structure and (d)
energy level alignment..........................79
Fig. 3-16 (a) Schematic diagram illustrating the electron
transfer from doped CdS into TiO2 nanoparticles
with the additional energy state by d-d
transition from Mn-doping trap (b) I-V curve
indicating the substantially improvement with the
Mn-doping with Mn-CdS alone or Mn-CdS/CdSe......84
Fig. 3-17 A comparison of the cation effect with (a) the
smaller cation like Li+ and (b) the larger one
like Cs+ as the additive in the electrolyte.....90
Fig. 3-18 The energy band alignment for TiO2/Sb2S3 and many
kinds of organic hole transport materials.......90
Fig. 3-19 (a) The depict of the structure for 2-D reduced-
graphene counter electrode applied with Cu2S. (b)
Illustration showing the much faster catalytic
effect with polysulfide with Pt counter
electrode.......................................94
Fig. 3-20 Schematic energy band diagram and charge transfer
processes in the QDSSC with PbS counter
electrode.......................................95
Fig. 4-1 The representation of the novel deposition by
painting with the mix of metal oxide and QDs.....98
Fig. 5-1 Illustration of the overall procedures for
assembling a CdSxSe1-x QDSSCs with working
electrode and counter electrode.................111
Fig. 5-2 Schematic representation of a typical assembly of
a solid-state dye-sensitized solar cell.........111
Fig. 6-1 I-V curves for the comparison of different
assembly of polysulfide electrolyte based on
CdSxSe1-x/ZnS liquid QDSSCs.....................114
Fig. 6-2 UV-vis spectrum for the comparison of the
CdSxSe1-x/ZnS photoelectrode with and without the
Cd2+ treatment..................................116
Fig. 6-3 I-V curves for the comparison CdSxSe1-x/ZnS liquid
QDSSCs with and without the Cd2+ pre-treatment and
also for different concentrations...............117
Fig. 6-4 I-V curves for the CdSxSe1-x/ZnS solid state ETA
solar cell......................................120
參考文獻 1 V. Balzani, A. Credi and M.Venturi, “Photochemical Conversion of Solar Energy”, ChemSuSChem, 1, 26–58, 2008.
2 J. H. Werner, “Advances in Solid State Physics”, 44, 51–67, 2004.
3 R. Scheer, T. Walter, H.W. Schock, M.L. Fearheiley, H.J. Lewerenz, “CuInS2 Based Thin Film Solar Cell with 10.2% Efficiency”, Appl. Phys. Lett., 63, 3294, 1993.
4 P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann and M. Powalla, “New World Record Efficiency for Cu(In,Ga)Se2 Thin-Film Solar Cells beyond 20%”, Prog. Photovolt. Appl., 19, 894–897, 2011.
5 J. Britt, C. Ferekides, “Thin-film CdS/CdTe Solar Cell with 15.8% Efficiency”, Appl. Phys. Lett., 62, 2851–2852, 1993.
6 T. K. Todorov, O. Gunawan, T. Gokmen and D. B. Mitzi, “Solution-Processed Cu(In,Ga)(S,Se)2 Absorber Yielding a 15.2% Efficient Solar Cell”, Prog. Photovolt. Appl., 21, 82, 2013.
7 W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells”, J. App. Phys.,32 , 510–519, 1961.
8 A. S. Brown and M. A. Green, “Detailed Balance Limit For the Series Constrained Two Terminal Tandem Solar Cell”, Physica E, 14, 96–100, 2002.
9 B. O’Regan and M. Grätzel, “A Low-cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films”, Nature, 353, 737–740, 1991.
10 R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom and B. de Boer, “Small Bandgap Polymers for Organic Solar Cells”, Polym. Rev., 48, 531, 2008.
11 U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer and M. Grätzel, “Solid-State Dye-sensitized Mesoporous TiO2 Solar Cells with High Photon-to-Electron Conversion Efficiencies”, Nature, 395, 583, 1998.
12 S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Pechy, M. Takata, H. Miura, S. Uchida and M. Gratzel, “High-Efficiency Organic-Dye-Sensitized Solar Cells Controlled by Nanocrystalline-TiO2 Electrode Thickness”, Adv. Mater., 18, 1202, 2006.
13 K. Keis, C. Bauer, G. Boschloo, A. Hagfeldt, K. Westermark, H. Rensmo and H. Siegbahn, “Nanostructured ZnO Electrodes for Dye-Sensitized Solar Cell Applications”, J. Photochem. Photobiol., A, 148, 57, 2002.
14 K. Keis, E. Magnusson, H. Lindstrom, S. E. Lindquist and A. Hagfeldt, “A 5% Efficient Photoelectrochemical Solar Cell Based on Nanostructured ZnO Electrodes”, Sol. Energy Mater. Sol. Cells, 73, 51–58, 2002.
15 A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin and M. Grätzel, “Porphyrin-Sensitized Solar Cells with Cobalt (II-III)–Based Redox Electrolyte Exceed 12 Percent Efficiency”, Science, 334, 629–634, 2011.
16 P. V. Kamat, “Meeting the Clean Energy Demand- Nanostructure Architectures for Solar Energy Conversion”, J. Phys. Chem. C, 111, 2834, 2007.
17 N. Serpone, E. Borgarello and M. Grätzel, “Visible Light Induced Generation of Hydrogen from H2S in Mixed Semiconductor Dispersions; Improved Efficiency through Inter-Particle Electron Transfer”, J. Chem. Soc., Chem. Commun., 342, 1984.
18 R. Vogel, P. Hoyer and H. Weller, “Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors”, J. Phys. Chem., 98, 3183–3188, 1994.
19 M. Grätzel, “Dye-Sensitized Solar Cells”, J. Photochem. Photobiol. C, 4, 145–153, 2003.
20 U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke and T. Nann, “Quantum Dots versus Organic Dyes as Fluorescent Labels”, Nat. Methods, 5, 763–775, 2008.
21 A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno and P. V. Kamat, “Quantum Dot Solar Cells. Tuning Photoresponse through Size and Shape Control of CdSe−TiO2 Architecture”, J. Am. Chem. Soc., 130, 4007, 2008.
22 D. Lee, J. Seo, X. Zhu, J. Lee H. J. Shin, J. M. Cole, T. Shin, J. Lee, H. Lee and H. B. Su, “Quantum Confinement-Induced Tuanble Exciton States in Graphene Oxide”, Sci. Rep., 3, 2250, 2013.
23 M. C. Beard, J. M. Luther, A. G. Midgett, O. E. Semonin, J. C. Johnson and A. J. Nozik, “Third Generation Photovoltaics Multiple Exciton Generation in Colloidal Quantum Dots, Quantum Dot Arrays, and Quantum Dot Solar Cells”, IEEE Phot. Spec. Conf., 000370−000375, 2010.
24 L. Li, J. Hu, W. Yang and A. P. Alivisatos, “Band Gap Variation of Size- and Shape-Controlled Colloidal CdSe Quantum Rods”, Nano Lett., 1, 349, 2001.
25 G. Zlateva, Z. Zhelev, R. Bakalova and I. Kanno, “Precise Size Control and Synchronized Synthesis of Six Colors of CdSe Quantum Dots in a Slow-Increasing Temperature Gradient”, Inorg. Chem., 46, 6212, 2007.
26 Z. Ning, H. Tian, H. Qin, Q. Zhang, H. Ågren, L. Sun and Y. Fu, “Wave-Function Engineering of CdSe-CdS Core-Shell Quantum Dots for Enhanced Electron Transfer to a TiO2 Substrate”, J. Phys. Chem. C, 114, 15184, 2010.
27 R. D. Schaller and V. I. Klimov, “High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion”, Phys. Rev. Lett., 92, 1866011−1, 2004.
28 O. E. Semonin, J. M. Luther, S. Choi, H. Y. Chen, J. B. Gao, A. J. Nozik and M. C. Beard, “Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell”, Science, 334, 1530–1533, 2011.
29 J. Wang, I. Mora-Seró, Z. Pan, K. Zhao, H. Zhang, Y. Feng, G. Yang, X. Zhong and J. Bisquert, “Core-Shell Colloidal Quantum Dot Exciplex States for the Development of Highly Efficient Quantum-Dot-Sensitized Solar Cells”, J. Am. Chem. Soc., 135, 15913–15922, 2013.
30 S. Gorer and G. Hodes, “Quantum Size Effects in the Study of Chemical Solution Deposition Mechanisms of semoconductor Film”, J. Phys. Chem., 98, 5338, 1994.
31 D. Liu and P. V. Kamat, “Photoelectrochemical Behavior of Thin Cadmium Selenide and Coupled Titania/Cadmium Selenide Semiconductor Films”, J. Phys. Chem., 97, 10769,1993.
32 S. C. Lin, Y. L. Lee, C. H. Chang, Y. J. Shen and Y. M. Yang, “Quantum-Dot-Sensitized Solar Cells: Assembly of CdS-Quantum-Dots Coupling” Appl. Phys. Lett., 90, 143517, 2007.
33 R. Vogel, K. Pohl and H. Weller, “Sensitization of Highly Porous, Polycrystalline TiO2 Electrodes by Quantum Sized CdS”, Chem. Phys. Lett, 174, 241, 1990.
34 V. Senthamilselvi, K. Saravanakumar, N. J. Begum, R.Anandhi, A. T. Ravichandran, B. Sakthivel, K. Ravicjandran, “Photovoltaic Properties of Nanocrystalline CdS Films Deposited by SILAR and CBD Techniques—a Comparative Study”, J. Mater. Sci.: Mater. Electron., 23, 302, 2012,.
35 Y. Hu, B. Wang, J. Zhang, T. Wang, R. Liu, J. Zhang, X. Wang and H. Wang, “Synthesis and Photoelectrochemical Response of CdS Quantum Dot-Sensitized TiO2 Nanorod Array Photoelectrodes”, Nanoscale Res. Lett., 8, 222–226, 2013.
36 J. T. Margraf, A. Ruland, V. Sgobba, D. M. Guldi and T. Clark, “Quantum-Dot-Sensitized Solar Cells: Understanding Linker Molecules through Theory and Experiment”, Langmuir, 29, 2434, 2013.
37 L. Etgar, J. Park, C. Barolo, M. K. Nazeeruddin, G. Viscardi and M. Graetzel, “Design and Development of Novel Linker for PbS Quantum Dots: TiO2 Mesoscopic Solar cell”, ACS Appl. Mater. Interfaces, 3, 3264–3267, 2011.
38 N. J. Smith, K. J. Emmett and S. J. Rosenthal, “Photovoltaic Cells Fabricated by Electrophoretic Deposition of CdSe Nanocrystals”, Appl. Phys. Lett., 93, 3, 2008.
39 S. Coe, W. K. Woo, M. Bawendi and V. Bulovic, “Electroluminescence from Single Monolayers of Nanocrystals in Molecular Organic Devices”, Nature, 420, 800–803, 2002.
40 J. Tang, G. Konstantatos, S. Hinds, S. Myrskog, A. G. Pattantyus-Abraham, J. Clifford and E. H. Sargent, “Heavy-Metal-Free Solution-Processed Nanoparticle-Based Photodetectors-Doping of Intrinsic Vacancies Enables Engineering of Sensitivity and Speed”, ACS Nano, 3, 331, 2009.
41 V. Wood, M. J. Panzer, J. Chen, M. S. Bradley, J. E. Halpert, M. G. Bawendi and V. Bulović, “Inkjet-Printed Quantum Dot–Polymer Composites for full-colar AC-Driven Displays”, Adv. Mater., 21, 1–5, 2009.
42 K. S. Cho, E. K. Lee, W. J. Joo, E. J. Jang, T. H. Kim, S. J. Lee, S. J. Kwon, J. Y. Han, B. K. Kim, B. L. Choi and J. M. Kim, “High-performance Crosslinked Colloidal Quantum-dot Light-emitting Diodes”, Nat. Photonics, 3, 341, 2009.
43 J. L. Zhao, J. A. Bardecker, A. M. Munro, M. S. Liu, Y. H. Niu, I. K. Ding, J. D. Luo, B. Q. Chen, A. K. Y. Jen and D. S. Ginger, “Efficient CdSe-CdS Quantum Dot Light-Emitting Diodes Using a Thermally Polymerized Hole Transport Layer”, Nano Lett., 6, 463–467, 2006.
44 J. Tang and E. H. Sargent, “Infrared Colloidal Quantum Dots for Photovoltaics: Fundamental and Recent Progress”, Adv. Mater., 23, 12–29, 2011.
45 S. Emin, S. P. Singh, L. Han, N. Satoh and A. Islam, “Colloidal Quantum Dot Solar Cells”, Sol. Energy, 85, 1264–1282, 2011.
46 A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian and E. H. Sargent, “Hybrid Passivated Colloidal Quantum Dot Solids”, Nat. Nanotechnol., 7, 577–582, 2012.
47 N. S. Lewis and D. G. Nocera, “Powering the Planet Chemical Challenges in Solar Energy Utilization”, Proc. Natl. Acad. Sci. U. S. A., 103, 15729–15735, 2006.
48 T. N. Veziroglu, “Editorial”, Int. J. Hydrogen Energy, 23, 1077, 1998.
49 M. D. Archer, “Photovoltaics and Photoelectrochemistry-similaritied and Differences”, Physica E, 14, 61–64, 2002.
50 A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode”, Nature, 238, 37–38, 1972.
51 M. Ni, M. K. H. Leung, D. Y. C. Leung and K. Sumathy, “A review and Recent Developments in Photocatalytic Water-splitting Using TiO2 for Hydrogen Production”, Renewable Sustainable Energy Rev., 11, 401, 2007.
52 K. S. Ahn, Y. Yan, S. Shet, K. Jones, T. Deutsch, J. Turner and M. Al-Jassim, “ZnO Nanocoral Structures for Photoelectrochemical Cells” Appl. Phys. Lett., 93, 163117, 2008.
53 A. J. Bard and M. A. Fox, “Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen”, Acc. Chem. Res., 28, 141–145, 1995.
54 J. I. Pancove, “Optical Process in Semiconductors (Dover, New Jersey) ”, Chap. 14, 1971.
55 S. Datta, M.R. Gokhale, A.P. Shah, B.M. Arora, S. Kumar, “Temperature Dependence of Surface Photovoltage of Bulk Semiconductors and the Effect of Surface Passivation”, Apply. Phys. Lett.,77, 4383, 2000.
56 M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-baker, E. Muller, P. Liska, N. Vlachopoulos, M. Gratzel, “Conversion of Light to Electricity by cis-XzBis (2,2’-bipyridyl-4,4’-dicarboxylate) Ruthenium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline Titanium Dioxide Electrodes”, J. Am. Chem. Soc, 115, 6382–6390, 1993.
57 Z. B. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner and H. N. Dinh, “Accelerating Materials Development for Photoelectrochemical Hydrogen Production- Standards for Methods, Definitions, and Reporting Protocols”, J. Mater. Res., 25, 3–16, 2010.
58 M. Grätzel, “Photoelectrochemical Cells”, Nature, 414, 338, 2001.
59 H. Kato, M. Hori, R. Konta, Y. Shimodaira and A. Kudo, “Construction of Z-scheme Type Heterogeneous Photocatalysis Systems for Water Splitting into H2 and O2 under Visible Light Irradiation”, Chem. Lett., 33, 1348, 2004.
60 A. Kudo and Y. Miseki, “Heterogeneous Photocatalyst Materials for Water Splitting”, Chem. Soc. Rev., 38, 253–278, 2009.
61 B. D. Alexander, P. J. Kulesza, L. Rutkowska, R. Solarska and J. Augustynski, “Metal oxide photoanodes for solar hydrogen production”, J. Mater. Chem., 18, 2298–2303, 2008.
62 B. Marsen, B. Cole and E. L. Miller, “Influence of Sputter Oxygen Partial Pressure on Photoelectrochemical Performance of Tungsten Oxide Films”, Sol. Energy Mater. Sol. Cells, 91, 1954, 2007.
63 A. J. Leenheer and H. A. Atwater, “Water-Splitting Photoelectrolysis Reaction Rate via Microscopic Imaging of Evolved Oxygen Bubbles”, J. Electrochem. Soc., 157, B1290, 2010.
64 S. Haussener, C. X. Xiang, J. M. Spurgeon, S. Ardo, N. S. Lewis and A. Z. Weber, “Modeling, Simulation, and Design Criteria for Photoelectrochemical Water-splitting Systems”, Energy Environ. Sci., 5, 9922–9935, 2012.
65 G. Hodes, “Photoelectrochemical Cell Measurements: Getting the Basics Right”, J. Phys. Chem. Lett., 3, 1208–1213, 2012.
66 M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori and N. S. Lewis, “Solar Water Splitting Cells”, Chem. Rev., 110, 6446–6473, 2010.
67 L. Vayssieres, “On Solar Hydrogen and Nanotechnology”, John Wiley & Sons (Asian), 2009.
68 A. B. Murphy, P. R. F. Barnes, L. K. Randeniya, I. C. Plumb, I. E. Grey, M. D. Horne and J. A. Glasscock, “Efficiency of Solar Water Splitting Using Semiconductor Electrodes”, Int. J. Hydrogen Energy, 31, 1999, 2006.
69 M. V. R. Krishna, F. Friesner, “Quantum Confinement Effects in Semiconductor Clusters”, J. Chem. Phys., 95, 8309, 1991.
70 S. Ruhle, M. Shalom, A. Zaban, “Quantum-Dot-Sensitized Solar Cells”, Chem. Phys. Chem., 11, 2290, 2010.
71 W. A. Tisdale, K. J. Williams, B. A. Timp, D. J. Norris, E. S. Aydil and X. Y. Zhu, “Hot-Electron Transfer from Semiconductor Nanocrystals”, Science, 328, 1543, 2010.
72 C. J. Murphy and J. L. Coffer, “Quantum Dots-A Primer”, Appl. Spectrosc., 56, 16A, 2002.
73 M. D. Archer and J. R. Bolton, “Requirements for Ideal Performance of Photochemical and Photovoltaic Solar Energy converters”, J. Phys. Chem., 94, 8028, 1990.
74 A. J. Nozik, “Quantum dot Solar Cells”, Phys. E., 14, 115–120, 2002.
75 A. J. Nozik, “Multiple Exiton Generation in Semiconductor Quantum Dots”, Chem. Phys. Lett., 457, 3, 2008.
76 A. J. Nozik, “Exciton Multiplication and Relaxation Dynamics in Quantum Dots-  Applications to Ultrahigh: Efficiency Solar Photon Conversion”, Inorg. Chem., 44, 6893, 2005.
77 M. C. Hanna and A. J. Nozik, “Solar Conversion Efficiency of Photovoltaic and Photoelectrolysis Cells with Carrier Multiplication Absorbers”, J. Appl. Phys., 100, 074510, 2006.
78 R.D. Schaller, M. Sykora, J. M. Pietryga, V. I. Klimov. “Seven Excitons at a Cost of One: Redefining the Limits for Conversion Efficiency of Photons into Charge Carriers”, Nano Lett., 6, 424, 2006.
79 A. Zaban, O. I. Micic, B. A. Gregg and A. J. Nozik, “Photosensitization of Nanoporous TiO2 Electrodes with InP Quantum Dots”, Langmuir, 14, 3153–3156, 1998.
80 K. Fan, M. Liu, T. Y. Peng, L. Ma and K. Dai, “Effects of Paste Components on the Properties of Screen-printed Porous TiO2 Film for Dye-Sensitized Solar Cells”, Renewable Energy, 35, 555, 2010.
81 S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Pechy, M. Takata, H. Miura, S. Uchida and M. Grätzel, “High‐Efficiency Organic‐Dye‐Sensitized Solar Cells Controlled by Nanocrystalline‐TiO2 Electrode Thickness”, Adv. Mater., 18, 1202, 2006.
82 N. N. Dinh, N. M. Quyen, D. N. Chung, M. Zikova and V. V. Truong, “Highly-efficient Electrochromic Performance of Nanostructured TiO2 Films Made by Doctor Blade Technique”, Sol. Energy Mater. Sol. Cells, 95, 618, 2011.
83 R. Pozas, A. Mihi, M. Ocana and H. Miguez, “Building Nanocrystalline Planar Defects within Self-Assembled Photonic Crystals by Spin-Coating”, Adv. Mater., 18, 1183, 2006.
84 Y. L. Liou, P. T. Hsiao, L. C. Chen, Y. Y. Chu and H. Teng, “Structure and Electron-Conducting Ability of TiO2 Films from Electrophoretic Deposition and Paste-Coating for Dye-Sensitized Solar Cells”, J. Phys. Chem. C, 115, 25580, 2011.
85 L. C. Chen, C. T. Hseih, Y. L. Lee, H. Teng, “Electron Transport Dynamics in TiO2 Films Deposited on Ti Foils for Back-Illuminated Dye-Sensitized Solar Cells”, ACS Appl. Mater. Interfaces, 5, 11958−11964, 2013
86 S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin, M. Grätzel, “Dye-sensitized Solar Cells with 13% Efficiency Achieved through the Molecular Engineering of Porphyrin Sensitizers”, Nature Chemistry, 6, 242-247, 2014.
87 K. Sayama, H. Suguhara and H. Arakawa, “Photoelectrochemical Properties of a Porous Nb2O5 Electrode Sensitized by a Ruthenium Dye”, Chem. Mater., 10, 3825, 1998.
88 A. I. Ekimov, F. Hache, M. C. Schanne-Klein, D. Ricard, C. Flytzanis, I. A. Kudryavsev, T. V. Yazeva, A. V. Rodina and AI. L. Efros, “Absorption and Intensity-dependent Photoluminescence Measurements on CdSe Quantum dots-assignment of the First Electronic Transitions”, J. Opt. Soc. Am. B, 10, 100, 1993.
89 W. Ma, J. M. Luther, H. Zheng, Y. Wu and A. P. Alivisatos, “Photovoltaic Devices Employing Ternary PbSxSe1-x Nanocrystals”, Nano Lett., 9, 1699–1703, 2009.
90 A. Lipovskii, E. Kolobkova, V. Petrikov, I. Kang, A. Olkhovets, T. Krauss, M. Thomas, J. Silcox, F. Wise, Q. Shen and S. Kycia, “Synthesis and Characterization of PbSe Quantum Dots in Phosphate Glass”, Appl. Phys. Lett., 71, 3406–3408, 1997.
91 A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel and E. H. Sargent, “Depleted-Heterojunction Colloidal Quantum Dot Solar Cells” ACS Nano, 4, 3374, 2010.
92 E. H. Sargent, “Colloidal Quantum Dot Solar Cells”, Nat. Photonics, 6, 133–135, 2012.
93 J. P. Clifford, K. W. Johnston, L. Levina and E. H. Sargent, “Schottky Barriers to Colloidal Quantum Dot Films”, Appl. Phys. Lett., 91, 253117, 2007.
94 J. M. Luther, M. Law, M. C. Beard, Q. Song, M. O. Reese, R. J. Ellingson and A. J. Nozik, “Schottky Solar Cells Based on Colloidal Nanocrystal Films”, Nano Lett., 8, 3488–3492, 2008.
95 W. Mönch. “In Semiconductor Surfaces and Interfaces”, Springer, p572, 2001.
96 R. Debnath, M. T. Greiner, I. J. Kramer, A. Fischer, J. Tang, D. A. R. Barkhouse, X. H. Wang, L. Levina, Z. H. Lu and E. H. Sargent, “Depleted-heterojunction Colloidal Quantum Dot Photovoltaics Employing Low-cost Electric Contacts”, Appl. Phys. Lett., 97, 023109, 2010.
97 P. Hartmann, D.-K. Lee, B. M. Smarsly and J. Janek, “Mesoporous TiO2: Comparison of Classical Sol−Gel and Nanoparticle Based Photoelectrodes for the Water Splitting Reaction”, ACS Nano, 4, 3147–3154, 2010.
98 A. Wolcott, W. A. Smith, T. R. Kuykendall, Y. P. Zhao and J. Z. Zhang, “Photoelectrochemical Study of Nanostructured ZnO Thin Films for Hydrogen Generation from Water Splitting”, Adv. Funct. Mater., 19, 1849–1856, 2009.
99 L. J. Minggu, W. R. W. Daud and M. B. Kassim, “An Overview of Photocells and Photoreactors for Photoelectrochemical Water Splitting”, Int. J. Hydrogen Energy, 35, 5233–5244, 2010.
100 N. Sato, “Electrochemistry at Metal and Semiconductor Electrodes”, Elsevier, New York, 1998.
101 C. Liu, X. G. Han, S. F. Xie, Q. Kuang, X. Wang, M. S. Jin, Z. X. Xie and L. S. Zheng, “Enhancing the Photocatalytic Activity of Anatase TiO2 by Improving the Specific Facet-induced Spontaneous Separation of Photogenerated Electrons and Holes”, Chem.–Asian. J., 8, 282, 2013.
102 H. Zhu, Y. Lan, X. Gao, S. Ringer, Z. Zheng, D. Song and J. Zhao, “Phase Transition between Nanostructures of Titanate and Titanium Dioxides via Simple Wet-Chemical Reactions”, J. Am. Chem. Soc., 127, 6730, 2005.
103 Y. W. Jun, M. F. Casula, J. H. Sim, S. Y. Kim, J. Cheon and A. P. Alivisatos, “Surfactant-Assisted Elimination of a High Energy Facet as a Means of Controlling the Shapes of TiO2 Nanocrystals”, J. Am. Chem. Soc., 125, 15981, 2003.
104 S. W. Liu, J. G. Yu and M. Jaroniec, “Anatase TiO2 with Dominant High-Energy {001} Facets-Synthesis, Properties, and Applications”, Chem. Mater., 23, 4085, 2011.
105 M.-J. Kim, C.-R. Lee, W.-S. Jeong, J.-H. Im, T. I. Ryu and N.-G. Park, “Unusual Enhancement of Photocurrent by Incorporation of Brönsted Base Thiourea into Electrolyte of Dye-Sensitized Solar Cell”, J. Phys. Chem. C, 114, 19849–19852, 2010.
106 L. Kavan, M. Grätzel, S. E. Gilbert, C. Klemenz and H. J. Scheel, “Electrochemical and Photoelectrochemical Investigation of Single-Crystal Anatase”, J. Am. Chem. Soc., 118, 6716, 1996.
107 S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska, P. Péchy and M. Grätzel, “Fabrication of Screen-Printing Pastes From TiO2 Powders for DSSC”, Progr. Photovolt.: Res. Appl., 15, 603–612, 2007.
108 J. Xi, Q. Zhang, K. Park, Y. Sun and G. Cao, “Enhanced Power Conversion Efficiency in Dye-sensitized Solar Cells with TiO2 Aggregates-nanocrystallites Mixed photoelectrodes”,Electrochim. Acta, 56, 1960–1966, 2011.
109 S. Lee, I. Cho, J. H. Lee, D. H. Kim, D. W. Kim, J. Y. Kim, H. Shin, J. K. Lee, H. S. Jung, N. G. Park, K. Kim, M. J. Ko and K. S. Hong, “Two-Step Sol−Gel Method-Based TiO2 Nanoparticles with Uniform Morphology and Size for Efficient Photo-Energy Conversion Devices”, Chem. Mater., 22, 1958–1965, 2010.
110 P. T. Hsiao, K. P. Wang, C. W. Cheng and H. Teng, “Nanocrystalline Anatase TiO2 Derived from a Titanate-directed Route for dye-sensitized Solar Cells”, J. Photochem. Photobiol., A, 188, 19, 2007.
111 C. C. Tsai and H. Teng, “Structural Features of Nanotubes Synthesized from NaOH Treatment on TiO2 with Different Post-Treatments”, Chem. Mater., 18, 367, 2006.
112 K. Yan, W. Chen and S. Yang, “Significantly Enhanced Open Circuit Voltage and Fill Factor of Quantum Dot Sensitized Solar Cells by Linker Seeding Chemical Bath Deposition”, J. Phys. Chem. C, 117, 92–99, 2012.
113 H. J. Snaith, “Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cell”, J. Phys. Chem. Lett., 4, 3623, 2013.
114 K. Zhu, N. R. Neale, A. Miedaner and A. J. Frank, “Enhanced Charge-Collection Efficiencies and Light Scattering in Dye-Sensitized Solar Cells Using Oriented TiO2 Nanotubes Arrays”, Nano Lett., 7, 69–74, 2007.
115 F. W. Zhuge, J. J. Qiu, X. M. Li, X. D. Gao, X. Y. Gan and W. D. Yu, “Toward Hierarchical TiO2 Nanotube Arrays for Efficient Dye-Sensitized Solar Cells”, Adv. Mater., 23, 1330–1334, 2011.
116 D. R. Baker and P. V. Kamat, “Photosensitization of TiO2 Nanostructures with CdS Quantum Dots: Particulate versus Tubular Support Architectures”, Adv. Funct. Mater., 19, 805, 2009.
117 F. Su, J. Lu, Y. Tian, X. Ma and J. Gong, “Branched TiO2 Nanoarrays Sensitized with CdS Quantum Dots for High Efficient Photoelectrochemical Water Splitting”, Phys. Chem. Chem. Phys., 15, 12026, 2013.
118 Q. Zhang, G. Chen, Y. Yang, X. Shen, Y. Zhang, C. Li, R. Yu, Y. Luo, D. Li and Q. Meng, “Toward Highly Efficient CdS-CdSe Quantum dots-sensitized Solar Cells Incorporating Ordered Photoanodes on Transparent Conductive Substrates”, Phys. Chem. Chem. Phys., 14, 6479–6486, 2012.
119 J. H. Shin, J. H. Kang, W. M. Jin, J. H. Park, Y. S. Cho and J. H. Moon, “Facile Synthesis of TiO2 Inverse Opal Electrodes for Dye-Sensitized Solar Cells”, Langmuir, 27, 856–860, 2011.
120 L. J. Diguna, Q. Shen, J. Kobayashi and T. Toyoda, “High Efficiency of CdSe Quantum-dot-sensitized TiO2 Inverse Opal Solar Cells”, Appl. Phys. Lett., 91, 023116, 2007.
121 T. Toyoda and Q. Shen, “Quantum-Dot-Sensitized Solar Cells-Effect of Nanostructured TiO2 Morphologies on Photovoltaic Properties”, J. Phys. Chem. Lett., 3, 1885–1893, 2012.
122 J. S. Luo, S. K. Karuturi, L. Liu, L. T. Su, A. I. Y. Tok and H. J. Fan, “Homogeneous Photosensitization of Complex TiO2 Nanostructures for Efficient Solar Energy Conversion”, Sci. Rep., 2, 451, 2012.
123 K. Kim, M.-J. Kim, S.-I. Kim and J.-H. Jang, “Towards Visible Light Hydrogen Generation-Quantum Dot-Sensitization via Efficient Light Harvesting of Hybrid-TiO2”, Sci. Rep., 3, 3330, 2013.
124 P. Sudhagar, J. H. Jung, S. Park, Y.-G. Lee, R. Sathyamoorthy, Y. S. Kang and H. Ahn, “The Performance of Coupled (CdS-CdSe) Quantum Dot-sensitized TiO2 Nanofibrous Solar Cells”, Electrochem. Commun., 11, 2220–2224, 2009.
125 X. Y. Yu, J. Y. Liao, K. Q. Qiu, D. B. Kuang and C. Y. Su, “Dynamic Study of Highly Efficient CdS/CdSe Quantum Dot-Sensitized Solar Cells Fabricated by Electrodeposition”, ACS Nano, 5, 9494, 2011.
126 Q. F. Zhang, S. Yodyingyong, J. T. Xi, D. Myers and G. Z. Cao, “Oxide Nanowires for Solar Cell Applications”, Nanoscale, 4, 1436–1445, 2012.
127 Q. F. Zhang, C. S. Dandeneau, X. Y. Zhou and G. Z. Cao, “ZnO Nanostructures for Dye-Sensitized Solar Cells”, Adv. Mater., 21, 4087–4108, 2009.
128 E. M. Kaidashev, M. Lorenz, H. vonWenckstern, A. Rahm, A. H. C. Semmelhack, K. H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth and M. Grundmann, “High Electron Mobility of Epitaxial ZnO Thin Films on c-plane Sapphire Grown by Multistep Pulsed-laser Deposition”, Appl. Phys. Lett., 82, 3901–3903, 2003.
129 X. Wang, J. Zhou, J. Song, J. Liu, N. Xu and Z. L. Wang, “Piezoelectric Field Effect Transistor and Nanoforce Sensor Based on a Single ZnO Nanowire”, Nano Lett., 6, 2768, 2006.
130 J. J. Tian, Q. F. Zhang, L. L. Zhang, R. Gao, L. F. Shen, S. G. Zhang, X. H. Qu and G. Z. Cao, “ZnO/TiO2 Nanocable Structured Photoelectrodes for CdS/CdSe Quantum Dot Co-Sensitized Solar Cells”, Nanoscale, 5, 936–943, 2013.
131 A. Irannejad, K. Janghorban, O. K. Tan, H. Huang, C. K. Lim, P. Y. Tan, X. Fang, C. S. Chua, S. Maleksaeedi, S. M. H. Hejazi, M. M. Shahjamali and M. Ghaffari, “Effect of the TiO2 Shell Thickness on The Dye-sensitized Solar Cells with ZnO–TiO2 Core–shell Nanorod Electrodes”, Electrochim. Acta, 58, 19–24, 2011.
132 J. J. Tian, Q. F.Zhang, E. Uchaker, R. Gao, X. H. Qu, S. G. Zhang, G. Z. Cao, “Architectured ZnO Photoelectrode for High Efficiency Quantum Dot Sensitized Solar Cells”, Energy Environ. Sci., 6, 3542−3547, 2013.
133 J. J. Tian, L. L. Lv, X. Y. Wang, C. B. Fei, X. G. Liu, Z. X. Zhao, Y. J. Wang, G. Z. Cao, “Microsphere Light-Scattering Layer Assembled by ZnO Nanosheets for the Construction of High Efficiency 5% Quantum Dots Sensitized Solar Cells”, J. Phys. Chem. C, DOI: 10.1021/jp412525k, 2014.
134 H. M. Cheng, K. Y. Huang, K. M. Lee, P. Yu, S. C. Lin, J. H. Huang, C. G. Wu and J. Tang, “High-efficiency Cascade CdS-CdSe Quantum Dot-sensitized Solar Cells Based on Hierarchical Tetrapod-like ZnO Nanoparticles”, Phys. Chem. Chem. Phys., 14, 13539–13548, 2012.
135 M. Seol, H. Kim, Y. Tak and K. Yong, “Novel Nanowire Array Based Highly Efficient Quantum Dot Sensitized Solar Cell”, Chem. Commun., 46, 5521, 2010.
136 M. Seol, E. Ramasamy, J. Lee and K. Yong, “Highly Efficient and Durable Quantum Dot Sensitized ZnO Nanowire Solar Cell Using Noble-Metal-Free Counter Electrode”, J. Phys. Chem. C, 115, 22018–22024, 2011.
137 P. Sudhagar, T. Song, D. H. Lee, I. Mora-Seró, J. Bisquert, M. Laudenslager, W. M. Sigmund, W. I. Park, U. Paik and Y. S. Kang, “High Open Circuit Voltage Quantum Dot Sensitized Solar Cells Manufactured with ZnO Nanowire Arrays and Si-ZnO Branched Hierarchical Structures”, J. Phys. Chem. Lett., 2, 1984–1990, 2011.
138 H. M. Chen, C. K. Chen, Y. C. Chang, C. W. Tsai, R. S. Liu, S. F. Hu, W. S. Chang and K. H. Chen, “Quantum Dot Monolayer Sensitized ZnO Nanowire-Array Photoelectrodes: True Efficiency for Water Splitting”, Angew. Chem., Int. Ed., 122, 6102–6105, 2010.
139 J. Jean, S. Chang, P. R. Brown, J. J. Cheng, P. H. Rekemeyer, M. G. Bawendi, S. Gradecak and V. Bulovic, “ZnO Nanowire Arrays for Enhanced Photocurrent in PbS Quantum Dot Solar Cells”, Adv. Mater., 25, 2790–2796, 2013.
140 S. K. Karuturi, J. S. Luo, C. W. Cheng, L. J. Liu, L. T. Su, A. I. Y. Tok and H. J. Fan, “A Novel Photoanode with Three-Dimensionally, Hierarchically Ordered Nanobushes for Highly Efficient Photoelectrochemical Cells”, Adv. Mater., 24, 4157, 2012.
141 S. Li, Z. Chen, T. Li, H. Gao, C. Wei, W. Li, W. Kong and W. Zhang, “Vertical Nanosheet-structured ZnO/TiO2 Photoelectrodes for Highly Efficient CdS Quantum Dot Sensitized Solar Cells”, Electrochimica acta, 127, 362–368, 2014.
142 J. Tian, Q. Zhang, E. Uchaker, Z. Liang, R. Gao, X. Qu, S. Zhang and G. Cao, “Constructing ZnO Nanorod Array Photoelectrodes for Highly Efficient Quantum Dot Sensitized Solar Cells”, J. Mater. Chem. A, 1, 6770, 2013.
143 J. Tian, E. Uchaker, Q. Zhang and G. Cao, “Hierarchically Structured ZnO Nanorods–Nanosheets for Improved Quantum-Dot-Sensitized Solar Cells”, ACS Appl. Mater. Interfaces, 6, 4466, 2014.
144 L. B. Li, Y. E. Wang, H. S. Rao, W. Q. Wu, K. N. Li, C. Y. Su and D. B. Kuang, “Hierarchical Macroporous Zn2SnO4–ZnO Nanorod Composite Photoelectrodes for Efficient CdS/CdSe Quantum Dot Co-Sensitized Solar Cells”, ACS Appl. Mater. Interfaces, 5, 11865, 2013.
145 Z. L. Zhu, J. H. Qiu, K. Y. Yan and S. H. Yang, “Building High-Efficiency CdS-CdSe-Sensitized Solar Cells with a Hierarchically Branched Double-Layer Architecture”, ACS Appl. Mater. Interfaces, 5, 4000, 2013.
146 J. Xu, X. Yang, H. K. Wang, X. Chen, C. Y. Luan, Z. X. Xu, Z. Z. Lu, V. A. L. Roy, W. J. Zhang and C. S. Lee, “Arrays of ZnO/ZnxCd1–xSe Nanocables-Band Gap Engineering and Photovoltaic Applications”, Nano Lett., 11, 4138, 2011.
147 J. Xu, X. Yang, Q.-D. Yang, T.-L. Wong, S.-T. Lee, W.-J. Zhang and C.-S. Lee, “Arrays of CdSe Sensitized ZnO-ZnSe Nanocables for Efficient Solar Cells with High Open-circuit Voltage”, J. Mater. Chem., 22, 13374–13379, 2012.
148 K. Tvrdy, P. A. Frantsuzov and P. V. Kamat, “Photoinduced Electron Transfer from Semiconductor Quantum Dots to Metal Oxide Nanoparticles”, Proc. Natl. Acad. Sci. U. S. A., 108, 29–34, 2011.
149 H. J. Snaith, A. Stavrinadis, P. Docampo and A. A. R. Watt, “Lead-sulphide Quantum-dot Sensitization of Tin Oxide Based Hybrid Solar Cells”, Sol. Energy, 85, 1283–1290, 2011.
150 H. C. Leventis, F. O'Mahony, J. Akhtar, M. Afzaal, P. O'Brien and S. A. Haque, “Transient Optical Studies of Interfacial Charge Transfer at Nanostructured Metal Oxide-PbS Quantum Dot-Organic Hole Conductor Heterojunctions”, J. Am. Chem. Soc., 132, 2743–2750, 2010.
151 M. A. Hossain, Z. Y. Koh and Q. Wang, “PbS/CdS-sensitized Mesoscopic SnO2 Solar Cells for Enhanced Infrared Light Harnessing”, Phys. Chem. Chem. Phys., 14, 7367–7374, 2012.
152 P. Tiwana, P. Docampo, M. B. Johnston, H. J. Snaith and L. M. Herz, “Electron Mobility and Injection Dynamics in Mesoporous ZnO, SnO2, and TiO2 Films Used in Dye-Sensitized Solar Cells”, ACS Nano, 5, 5158–5166, 2011.
153 M. A. Hossain, J. R. Jennings, Z. Y. Koh and Q. Wang, “Carrier Generation and Collection in CdS-CdSe-Sensitized SnO2 Solar Cells Exhibiting Unprecedented Photocurrent Densities”, ACS Nano, 5, 3172–3181, 2011.
154 Q. Huang, F. Li, Y. Gond, J. Luo, S. Yang, Y. Luo, D. Li, X. Bai and Q. Meng, “Recombination in SnO2‑Based Quantum Dots Sensitized Solar Cells-The Role of Surface States”, J. Phys. Chem. C, 117, 10965–10973, 2013.
155 S. O'Brien, L. Brus and C. B. Murray, “Synthesis of Monodisperse Nanoparticles of Barium Titanate-Toward a Generalized Strategy of Oxide Nanoparticle Synthesis”, J. Am. Chem. Soc., 123, 12085–12086, 2001.
156 S. K. Kim, M. K. Son, S. Park, M. S. Jeong, K. Prabakar and H. J. Kim, “Surface Modification on TiO2 Nanoparticles in CdS/CdSe Quantum Dot-sensitized Solar Cell”, Electrochimica acta, 118, 118-123, 2014.
157 K. Meng, P. K. Surolia and K. R. Thampi, “BaTiO3 Photoelectrodes for CdS Quantum Dot sensitized Solar Cells”, J. Mater. Chem. A, DOI: 10.1039/C4TA00877D, 2014.
158 S. Kelkar, C. Ballal, A. Deshpande, S. Warule and S. Ogale, “Quantum Dot CdS Coupled Cd2SnO4 Photoanode with High Photoelectrochemical Water Splitting Efficiency”, J. Mater. Chem. A, 1, 12426, 2013.
159 Y. Li, A. Pang, X. Zheng and M. Wei, “CdS Quantum-dot-sensitized Zn2SnO4 Solar Cell”, Electrochim. Acta, 56, 4902, 2011.
160 T. López-Luke, A. Wolcott, L.-P. Xu, S. Chen, Z. Wen, J. Li, E. D. L. Rosa and J. Z. Zhang, “Nitrogen-Doped and CdSe Quantum-Dot-Sensitized Nanocrystalline TiO2 Films for Solar Energy Conversion Applications”, J. Phys. Chem. C, 112, 1282, 2008.
161 R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, “Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides”, Science, 293, 269–271, 2001.
162 S. Livraghi, M. C. Paganini, E. Giamello, A. Selloni, C. Di Valentin and G. Pacchioni, “Origin of Photoactivity of Nitrogen-Doped Titanium Dioxide under Visible Light”, J. Am. Chem. Soc., 128, 15666, 2006.
163 J. Wang, D. N. Tafen, J. P. Lewis, Z. L. Hong, A. Manivannan, M. J. Zhi, M. Li and N. Q. Wu, “Origin of Photocatalytic Activity of Nitrogen-Doped TiO2 Nanobelts”, J. Am. Chem. Soc., 131, 12290, 2009.
164 N. Serpone, “Is the Band Gap of Pristine TiO2 Narrowed by Anion- and Cation-Doping of Titanium Dioxide in Second-Generation Photocatalysts”, J. Phys. Chem. B, 110, 24287, 2006.
165 J. Hensel, G. M. Wang, Y. Li and J. Z. Zhang, “Synergistic Effect of CdSe Quantum Dot Sensitization and Nitrogen Doping of TiO2 Nanostructures for Photoelectrochemical Solar Hydrogen Generation”, Nano Lett., 10, 478–483, 2010.
166 T. Shu, P. Xiang, Z.-M. Zhou, H. Wang, G.-H. Liu, H.-W. Han and Y.-D. Zhao, “Mesoscopic Nitrogen-doped TiO2 Spheres for Quantum dot-sensitized Solar Cells”, Electrochim. Acta, 68, 166–171, 2012.
167 B. Ehrler, K. P. Musselman, M. L. Böhm, F. S. F. Morgenstern, Y. Vaynzof, B. J. Walker, J. L. MacManus-Driscoll and N. C. Greenham, “Preventing Interfacial Recombination in Colloidal Quantum Dot Solar Cells by Doping the Metal Oxide”, ACS nano, 7, 4210, 2013.
168 G. Zhu, Z. J. Cheng, T. Lv, L. K. Pan, Q. F. Zhao and Z. Sun, “Zn-doped Nanocrystalline TiO2 Films for CdS Quantum Dot Sensitized Solar Cells”, Nanoscale, 2, 1229, 2010.
169 A. Ranjitha, N. Muthukumarasamy, M. Thambidurai, D. Velauthapillai, R. Balasundaraprabhu and S. Agilan, “CdS Quantum Dot Sensitized Nanocrystalline Gd-doped TiO2 Thin Films for Photoelectrochemical Solar Cells”, J. Mater. Sci.: Mater. Electron, 24, 3014-3020, 2013.
170 H. Liu, J. Tang, I. J. Kramer, R. Debnath, G. I. Koleilat, X. Wang, A. Fisher, R. Li, L. Brzozowski, L. Levina and E. H. Sargent, “Electron Acceptor Materials Engineering in Colloidal Quantum Dot Solar Cells”, Adv. Mater., 23, 3832–3837, 2011.
171 L. Jiang, T. You and W. Q. Deng, “Enhanced Photovoltaic Performance of a Quantum Dot-sensitized Solar Cell Using a Nb-doped TiO2 Electrode”, Nanotechnology, 24, 415401, 2013.
172 Q. Shen, J. Kobayashi, L. J. Diguna and T. Toyoda, “Effect of ZnS Coating on the Photovoltaic Properties of CdSe Quantum Dot-sensitized Solar Cells”, J. Appl. Phys., 103, 084304, 2008.
173 Y. Choi, M. Seol, W. Kim and K. Yong, “Chemical Bath Deposition of Stoichiometric CdSe Quantum Dots for Efficient Quantum-Dot-Sensitized Solar Cell Application”, J. Phys. Chem. C, 118, 5664–5670, 2014.
174 C.-H. Chang and Y.-L. Lee, “Chemical Bath Deposition of CdS Quantum Dots onto Mesoscopic TiO2 Films for Application in Quantum-dot-sensitized Solar Cells”, Appl. Phys. Lett., 91, 053503, 2007.
175 S. W. Jung, J. H. Kim, H. Kim, C. J. Choi and K. S. Ahn, “CdS Quantum Dots Grown by In Situ Chemical Bath Deposition for Quantum Dot-sensitized Solar cells”, J. Appl. Phys., 110, 044313, 2011.
176 J. A. Chang, J. H. Rhee, S. H. Im, Y. H. Lee, H.-J. Kim, S. I. Seok, M. K. Nazeeruddin and M. Grätzel, “High-Performance Nanostructured Inorganic−Organic Heterojunction Solar Cells”, Nano Lett., 10, 2609, 2010.
177 G. Zhu, L. K. Pan, T. Xu and Z. Sun, “One-Step Synthesis of CdS Sensitized TiO2 Photoanodes for Quantum Dot-Sensitized Solar Cells by Microwave Assisted Chemical Bath Deposition Method”, ACS Appl. Mater. Interfaces, 3, 1472–1478, 2011.
178 G. Zhu, L. Pan, T. Xu and Z. Sun, “CdS/CdSe-Cosensitized TiO2 Photoanode for Quantum-Dot-Sensitized Solar Cells by a Microwave-Assisted Chemical Bath Deposition Method”, ACS Appl. Mater. Interfaces, 3, 3146–3151, 2011.
179 M. A. Mahdi, Z. Hassan, S. S. Ng, J. J. Hassan and S. K. Mohd Bakhori, “Structural and Optical Properties of Nanocrystalline CdS Thin Films Prepared Using Microwave-assisted Chemical Bath Deposition”, Thin Solid Films, 520, 3477, 2012.
180 P. Hoyer and R. Konenkamp, “Photoconduction in Porous TiO2 Sensitized by PbS Quantum Dots”, Appl. Phys. Lett., 66, 349, 1995.
181 J. W. Lee, D.-Y. Son, T. K. Ahn, H.-W. Shin, I. Y. Kim, S.-J. Hwang, M. J. Ko, S. Sul, H. Han and N.-G. Park, “Quantum-Dot-Sensitized Solar Cell with Unprecedentedly High Photocurrent”, Sci. Rep., 3, 1050, 2013.
182 R. Zhou, Q. F. Zhang, J. J. Tian, D. Myes, M. Yin, G. Z. Cao, “Influence of Cationic Precursors on CdS Quantum-Dot-Sensitized Solar Cell Prepared by Successive Ionic Layer Adsorption and Reaction”, J. Phys. Chem. C, 117, 26948, 2013.
183 E. Rabinovich and G. Hodes, “Effective Bandgap Lowering of CdS Deposited by Successive Ionic Layer Adsorption and Reaction”, J. Phys. Chem. C, 117, 1611–1620, 2013.
184 J. Joo, D. Kim, D.-J. Yun, H. Jun, S.-W. Rhee, J. S. Lee, K. Yong, S. Kim and S. Jeon, “The Fabrication of Highly Uniform ZnO/CdS Core/Shell Structures Using a Spin-coating-based Successive Ion Layer Adsorption and Reaction Method”, Nanotechnology, 21, 325604, 2010.
185 R. Zhang, Q.-P. Luo, H.-Y. Chen, X.-Y. Yu, D.-B. Kuang and C.-Y. Su, “CdS/CdSe Quantum Dot Shell Decorated Vertical ZnO Nanowire Arrays by Spin-Coating-Based SILAR for Photoelectrochemical Cells and Quantum-Dot-Sensitized Solar Cells”, ChemPhysChem, 13, 1435–1439, 2012.
186 I. Concina, N. Memarian, G. S. Selopal, M. M. Natile, G. Sberveglieri and A. Vomiero, “Spray-assisted Silar Deposition of Cadmium Sulphide Quantum Dots on Metal Oxide Films for Excitonic Solar Cells”, J. Power Sources, 240, 736-744, 2013.
187 H. J. Lee, M. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Grätzel and M. K. Nazeeruddin, “Efficient CdSe Quantum Dot-Sensitized Solar Cells Prepared by an Improved Successive Ionic Layer Adsorption and Reaction Process”, Nano Lett., 9, 4221, 2009.
188 J. J. Tian, R. Gao, Q. F. Zhang, S. G. Zhang, Y. W. Li, J. L. Lan, X. H. Qu and G. Z. Cao, “Enhanced Performance of CdS/CdSe Quantum Dot Cosensitized Solar Cells via Homogeneous Distribution of Quantum Dots in TiO2 Film”, J. Phys. Chem. C, 116, 18655–18662, 2012.
189 I. Mora-Seró, S. Giménez, T. Moehl, F. Fabregat-Santiago, T. Lana-Villareal, R. Gómez and J. Bisquert, “Factors Determining the Photovoltaic Performance of a CdSe Quantum Dot Sensitized Solar Cell: the Role of the Linker Molecule and of the Counter Electrode”, Nanotechnology, 19, 424007, 2008.
190 R. S. Dibbell, G. R. Soja, R. M. Hoth and D. F. Watson, “Photocatalytic Patterning of Monolayers for the Site-Selective Deposition of Quantum Dots onto TiO2 Surfaces”, Langmuir, 23, 3432–3439, 2007.
191 I. Robel, V. Subramanian, M. Kuno and P. V. Kamat, “Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films” J. Am. Chem. Soc., 128, 2385–2393, 2006.
192 T. L. Li and H. Teng, “Solution Synthesis of High-quality CuInS2 Quantum Dots as Sensitizers for TiO2 Photoelectrodes”, J. Mater. Chem., 20, 3656–3664, 2010.
193 T. L. Li, Y. L. Lee and H. Teng, “CuInS2 Quantum Dots Coated with CdS as High-performance Sensitizers for TiO2 Electrodes in Photoelectrochemical Cells”, J. Mater. Chem., 21, 5089–5098, 2011.
194 T. L. Li, Y. L. Lee and H. Teng, “High-performance Quantum Dot-sensitized Solar Cells Based on Sensitization with CuInS2 Quantum Dots/CdS Heterostructure”, Energy Environ. Sci., 5, 5315, 2012.
195 R. G. Pearson, “Hard and Soft Acids and Bases”, J. Am. Chem. Soc., 85, 3533, 1963.
196 J. Chen, J. L. Song, X. W. Sun, W. Q. Deng, C. Y. Jiang, W. Lei, J. H. Huang and R. S. Liu, “An Oleic Acid-capped CdSe Quantum-dot Sensitized Solar Cell”, Appl. Phys. Lett., 94, 153115, 2009.
197 N. Guijarro, T. Lana-Villarreal, I. Mora-Seró, J. Bisquert and R. Gómez, “CdSe Quantum Dot-Sensitized TiO2 Electrodes-Effect of Quantum Dot Coverage and Mode of Attachment”, J. Phys. Chem. C, 113, 4208–4214, 2009.
198 X.-Y. Yu, B.-X. Lei, D.-B. Kuang and C.-Y. Su, “Highly Efficient CdTe/CdS Quantum Dot Sensitized Solar Cells Fabricated by a One-step Linker Assisted Chemical Bath Deposition”, Chem. Sci., 2, 1396–1400, 2011.
199 X. Yu, B. Lei, D. Kuang and C. Su, “High Performance and Reduced Charge Recombination of CdSe/CdS Quantum Dot-sensitized Solar Cells”, J. Mater. Chem., 22, 12058, 2012.
200 F. Liu, J. Zhu, J. Wei, Y. Li, L. Hu, Y. Huang, O. Takuya, Q. Shen, T. Toyoda, B. Zhang, B. Zhang, J. Yao and S. Dai, “Ex Situ CdSe Quantum Dot-Sensitized Solar Cells Employing Inorganic Ligand Exchange To Boost Efficiency”, J. Phys. Chem. C, 118, 214–222, 2013.
201 S. Choi, H. Jin and S. Kim, “SnS44– Metal Chalcogenide Ligand, S2– Metal Free Ligand, and Organic Surface Ligand Toward Efficient CdSe Quantum Dot- Sensitized Solar Cells”, J. Phys. Chem. C, DOI: 10.1021/jp5005242, 2014.
202 Z. J. Ning, Y. Ren, S. Hoogland, O. Voznyy, L. Levina, P. Stadler, X. Z. Lan, D. Zhitomirsky and E. H. Sargent, “All-Inorganic Colloidal Quantum Dot Photovoltaics Employing Solution-Phase Halide Passivation”, Adv. Mater., 24, 6295–6299, 2012.
203 J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury and E. H. Sargent, “Colloidal-quantum-dot Photovoltaics Using Atomic-ligand Passivation”, Nat. Mater., 10, 765, 2011.
204 C.-H. M. Chuang, P. R. Brown, V. Bulovć and M. G. Bawendi, “Improved Performance and Stability in Quantum Dot Solar Cells through Band Alignment Engineering”, Nat. Mater., 2014, doi:10.1038/nmat3984.
205 H. Zhang, K. Cheng, Y. M. Hou, Z. Fang, Z. X. Pan, W. J. Wu, J. L. Hua and X. H. Zhong, “Efficient CdSe Quantum Dot-sensitized Solar Cells Prepared by a Postsynthesis Assembly Approach”, Chem. Commun., 48, 11235–11237, 2012.
206 Z. Pan, H. Zhang, K. Cheng, Y. Hou, J. Hua and X. Zhong, “Highly Efficient Inverted Type-I CdS/CdSe Core/Shell Structure QD-Sensitized Solar Cells”, ACS Nano, 6, 3982–3991, 2012.
207 Z. Pan, K. Zhao, J. Wang, Y. Feng and Z. Zhong, “Near Infrared Absorption of CdSexTe1–x Alloyed Quantum Dot Sensitized Solar Cells with More than 6% Efficiency and High Stability”, ACS Nano, 7, 5215–5222, 2013.
208 H. McDaniel, N. Fuke, N. S. Makarov, J. M. Pietryga and V. I. Klimov, “An Integrated Approach to Realizing High-performance Liquid-junction Quantum Dot Sensitized Solar Cells”, Nature commun., 4, 2887, 2013.
209 Z. Pan, I. Mora-Sero, Q. Shen, H. Zhang, Y. Li, K. Zhao, J. Wang, X. Zhong and J. Bisquert, “High Efficiency Green Quantum Dot Solar Cells”, J. Am. Chem. Soc., DOI:10.1021/ja504310w, 2014.
210 S. Giménez, I. Mora-Seró, L. Macor, N. Guijarro, T. Lana-Villarreal, R. Gómez, L. J. Diguna, Q. Shen, T. Toyoda and J. Bisquert, “Improving the Performance of Colloidal Quantum-dot-sensitized Solar Cells”, Nanotechnology, 20, 295204, 2009.
211 K. Rajeshwar, “Electrosynthesized Thin Films of Group II–VI Compound Semiconductors, Alloys and Superstructures”, Adv. Mater., 4, 23, 1992.
212 A. Salant, M. Shalom, I. Hod, A. Faust, A. Zaban and U. Banin, “Quantum Dot Sensitized Solar Cells with Improved Efficiency Prepared Using Electrophoretic Deposition”, ACS Nano, 4, 5962, 2010.
213 X. Song, M. Wang, H. Zhang, J. Deng, Z. Yang, C. Ran and X. Yao, “Morphologically Controlled Electrodeposition of CdSe on Mesoporous TiO2 Film for Quantum Dot-sensitized Solar Cells”, Electrochim. Acta, 108, 449–457, 2013.
214 P. K. Santra and P. V. Kamat, “Tandem-Layered Quantum Dot Solar Cells-Tuning the Photovoltaic Response with Luminescent Ternary Cadmium Chalcogenides”, J. Am. Chem. Soc., 135, 877, 2013.
215 C.-F. Chi, H.-W. Cho, H. Teng, C.-Y. Chuang, Y.-M. Chang, Y.-J. Hsu and Y.-L. Lee, “Energy Level Alignment, Electron Injection, and Charge Recombination Characteristics in CdS/CdSe Cosensitized TiO2 Photoelectrode”, Appl. Phys. Lett, 98, 012101–012103, 2011.
216 R. S. Selinsky, Q. Ding, M. S. Faber, J. C. Wright and S. Jin, “Quantum Dot Nanoscale Heterostructures for Solar Energy Conversion”, Chem. Soc. Rev., 42, 2963–2985, 2013.
217 Y.-L. Lee and Y.-S. Lo, “Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of CdS/CdSe”, Adv. Funct. Mater., 19, 604–609, 2009.
218 Y. L. Lee, C. F. Chi and S. Y. Liau, “CdS/CdSe Co-Sensitized TiO2 Photoelectrode for Efficient Hydrogen Generation in a Photoelectrochemical Cell”, Chem. Mater., 22, 922, 2010.
219 J. G. Radich, R. Dwyer and P. V. Kamat, “Cu2S Reduced Graphene Oxide Composite for High-Efficiency Quantum Dot Solar Cells. Overcoming the Redox Limitations of S2–-Sn2– at the Counter Electrode”, J. Phys. Chem. Lett., 2, 2453–2460, 2011.
220 Q. Zhang, X. Guo, X. Huang, S. Huang, D. Li, Y. Luo, Q. Shen, T. Toyoda and Q. Meng, “Highly Efficient CdS-CdSe-sensitized Solar Cells Controlled by the Structural Properties of Compact Porous TiO2 Photoelectrodes”, Phys. Chem. Chem. Phys., 13, 4659, 2011.
221 T. Shu, Z. M. Zhou, H. Wang, G. H. Liu, P. Xiang, Y. G. Rong, H. W. Han and Y. D. Zhao, “Efficient Quantum Dot-sensitized Solar Cell with Tunable Energy Band CdSexS(1−x) Quantum Dots”, J. Mater. Chem., 22, 10525–10529, 2012.
222 Md. A. Hossain, J. R. Jennings, C. Shen, J. H. Pan, Z. Y. Koh, N. Mathews and Q. Wang, “CdSe-sensitized Mesoscopic TiO2 Solar Cells Exhibiting 5% Efficiency-redundancy of CdS Buffer layer”, J. Mater. Chem., 22, 16235, 2012.
223 M. J. Jin, X. Y. Chen, Z. M. Gao, T. Ling and X. W. Du, “Improve Photo-electron Conversion Efficiency of ZnO/CdS Coaxial Nanorods by p-type CdTe Coating”, Nanotechnology, 23, 485401, 2012.
224 P. Sheng, W. Li, J. Cai, X. Wang, X. Tong, Q. Cai and C. A. Grimes, “A Novel Method for the Preparation of a Photocorrosion Stable Core/Shell CdTe/CdS Quantum Dot TiO2 Nanotube Array Photoelectrode Demonstrating an AM 1.5G Photoconversion Efficiency of 6.12%”, J. Mater. Chem. A, 1, 7806, 2013.
225 A. Braga, S. Giménez, I. Concina, A. Vomiero and I. Mora-Seró, “Panchromatic Sensitized Solar Cells Based on Metal Sulfide Quantum Dots Grown Directly on Nanostructured TiO2 Electrodes”, J. Phys. Chem. Lett., 2, 454–460, 2011.
226 N. Zhou, G. P. Chen, X. L. Zhang, L. Y. Cheng, Y. H. Luo, D. M. Li and Q. B. Meng, “Highly Efficient PbS/CdS Co-sensitized Solar Cells Based on Photoanodes with Hierarchical Pore Distribution”, Electrochem. Commun., 20, 97, 2012.
227 Y. Jin-nouchi, T. Hattori, M. Fujishima and H. Tada, “PbS Quantum Dot-Sensitized Photoelectrochemical Cell for Hydrogen Production from Water under Illumination of Simulated Sunlight”, ChemPhysChem, 11, 3592–3595, 2010.
228 R. Trevisan, P. Rodenas, V. Gonzalez-Pedro, C. Sima, R. S. Sanchez, E. M. Barea, I. Mora-Sero, F. Fabregat-Santiago and S. Gimenez, “Harnessing Infrared Photons for Photoelectrochemical Hydrogen Generation. A PbS Quantum Dot Based “Quasi-Artificial Leaf” ”, J. Phys. Chem. Lett., 4, 141–146, 2013.
229 M. Nam, S. Kim, S. Kim, S.-W. Kim and K. Lee, “Efficient Hybrid Solar Cells Using PbSxSe1−x Quantum Dots and Nanorods for Broad-range Photon Absorption and Well-assembled Charge Transfer Networks”, Nanoscale, 5, 8202, 2013.
230 R. Debnath, J. Tang, D. A. Barkhouse, X. H. Wang, A. G. Pattantyus-Abraham, L. Brzozowski, L. Levina and E. H. Sargent, “Ambient-Processed Colloidal Quantum Dot Solar Cells via Individual Pre-Encapsulation of Nanoparticles”, J. Am. Chem. Soc., 132, 5952, 2010.
231 C. Piliego, L. Protesescu, S. Z. Bisri, M. V. Kovalenko and M. A. Loi, “5.2% Efficient PbS Nanocrystal Schottky Solar Cells”, Energy Environ. Sci., 6, 3054, 2013.
232 L. Etgar, T. Moehl, S. Gabriel, S. G. Hickey, A. Eychmüller and M. Grätzel, “Light Energy Conversion by Mesoscopic PbS Quantum Dots/TiO2 Heterojunction Solar Cells”, ACS Nano, 6, 3092, 2012.
233 H. Wang, T. Kubo, J. Nakazaki, T. Kinoshita and H. Segawa, “PbS-Quantum-Dot-Based Heterojunction Solar Cells Utilizing ZnO Nanowires for High External Quantum Efficiency in the Near-Infrared Region”, J. Phys. Chem. Lett., 4, 2455, 2013.
234 P. Maraghechi, A. J. Labelle, A. R. Kirmani, X. Lan, M. M. Adachi, S. M. Thon, S. Hoogland, A. Lee, Z. Ning, A. Fischer, A. Amassian and E. H. Sargent, “The Donor–Supply Electrode Enhances Performance in Colloidal Quantum Dot Solar Cells”, ACS Nano, 7, 6111, 2013.
235 L. Y. Chang, R. R. Lunt, P. R. Brown, V. Bulović and M. G. Bawendi, “Low-Temperature Solution-Processed Solar Cells Based on PbS Colloidal Quantum Dot-CdS Heterojunctions”, Nano Lett., 13, 994–999, 2013.
236 A. K. Rath, M. Bernechea, L. Martinez, F. P. G. de Arquer, J. Osmond and G. Konstantatos, “Solution-processed Inorganic Bulk Nano-heterojunctions and Their Application to Solar Cells”, Nat. Photonics, 6, 529–534, 2012.
237 R. Tena-Zaera, M. A. Ryan, A. Katty, G. Hodes, S. Bastide and C. Lévy-Clément, “Fabrication and Characterization of ZnO Nanowires/CdSe/CuSCN Eta-solar Cell”, C. R. Chim., 9, 717, 2006.
238 S. H. Im, C. S. Lim, J. A. Chang, Y. H. Lee, N. Maiti, H. J. Kim, M. K. Nazeeruddin, M. Grätzel and S. Il Seok, “Toward Interaction of Sensitizer and Functional Moieties in Hole-Transporting Materials for Efficient Semiconductor-Sensitized Solar Cells”, Nano Lett., 11, 4789–4793, 2011.
239 Y. C. Choi, D. U. Lee, J. H. Noh, E. K. Kim and S. Il Seok, “Highly Improved Sb2S3 Sensitized-Inorganic–Organic Heterojunction Solar Cells and Quantification of Traps by Deep-Level Transient Spectroscopy”, Adv. Funct. Mater., DOI: 10.1002/adfm.201304238, 2014.
240 J. Y. Chang, L. F. Su, C. H. Li, C. C. Chang and J. M. Lin, “Efficient “Green” Quantum Dot-sensitized Solar Cells Based on Cu2S–CuInS2–ZnSe Architecture, Chem. Commun., 48, 4848, 2012.
241 M. Booth, A. P. Brown, S. D. Evans and K. Critchley, “Determining the Concentration of CuInS2 Quantum Dots from the Size-Dependent Molar Extinction Coefficient”, Chem. Mater., 24, 2064–2070, 2012.
242 D. Aldakov, A. Lefrancois and P. Reiss, “Ternary and Quaternary Metal Chalcogenide Nanocrystals- Synthesis, Properties and Applications”, J. Mater. Chem. C, 1, 3756–3776, 2013.
243 C. Liu, L. Mu, J. Jia, X. Zhou and Y. Lin, “Boosting the Cell Efficiency of CdSe Quantum Dot Sensitized Solar Cell via a Modified ZnS Post-treatment”, Electrochim. Acta, 111, 179-184, 2013.
244 J.-Y. Chang, J.-M. Lin, L.-F. Su and C.-F. Chang, “Improved Performance of CuInS2 Quantum Dot-Sensitized Solar Cells Based on a Multilayered Architecture”, ACS Appl. Mater. Interfaces, 5, 8740–8752, 2013.
245 C. Lin, C. Teng, T. Li, Y. Lee and H. Teng, “Photoactive P-type PbS as a Counter Electrode for Quantum Dot-sensitized Solar cells”, J. Mater. Chem. A, 1, 1155, 2013.
246 H. McDaniel, N. Fuke, J. M. Pietryga and V. I. Klimov, “Engineered CuInSexS2–x Quantum Dots for Sensitized Solar Cells”, J. Phys. Chem. Lett., 4, 355, 2013.
247 S. Kim, M. Kang, S. Kim, J. Heo, J. H. Noh, S. H. Im, S. I. Seok and S. Kim, “Fabrication of CuInTe2 and CuInTe2–xSex Ternary Gradient Quantum Dots and Their Application to Solar Cells”, ACS Nano, 7, 4756, 2013.
248 T. Zewdu, J. N. Clifford and E. Palomares, “Synergistic Effect of ZnS Outer Layers and Electrolyte Methanol Content on Efficiency in TiO2/CdS/CdSe Sensitized Solar Cells”, Phys. Chem. Chem. Phys., 14, 13076–13080, 2012.
249 J. G. Radich, N.R. Peeples, P. K. Santra and P. V. Kamat, “Charge Transfer Mediation Through CuxS. The Hole Story of CdSe in Polysulfide”, J. Phys. Chem. C, DOI: 10.1021/jp4113365, 2014.
250 M. S. de la Fuente, R. S. Sánchez, V. González-Pedro, P. P. Boix, S. G. Mhaisalkar, M. E. Rincón, J. Bisquert and I. Mora-Seró, “Effect of Organic and Inorganic Passivation in Quantum-Dot-Sensitized Solar Cells”, J. Phys. Chem. Lett., 4(9), 1519–1525, 2013.
251 P. K. Santra and P. V. Kamat, “Mn-Doped Quantum Dot Sensitized Solar Cells-A Strategy to Boost Efficiency over 5%”, J. Am. Chem. Soc., 134, 2508, 2012.
252 J. Luo, H. Wei, Q. Huang, X. Hu, H. Zhao, R. Yu, D. Li, Y. Luo and Q. Meng, “Highly Efficient Core Shell CuInS2-Mn Doped CdS Quantum Dots Sensitized Solar Cells”, Chem. Commun., 49, 3881–3883, 2013.
253 Z. B. Huang, X. P. Zou and H. Q. Zhou, “A Strategy to Achieve Superior Photocurrent by Cu-doped Quantum Dot Sensitized Solar Cell”, Mater. Lett., 95, 139–141, 2013.
254 M. Shalom, J. Albero, Z. Tachan, E. Martínez-Ferrero, A. Zaban and E. Palomares, “Quantum Dot−Dye Bilayer-Sensitized Solar Cells-Breaking the Limits Imposed by the Low Absorbance of Dye Monolayers”, J. Phys. Chem. Lett., 1, 1134, 2010.
255 H. Choi, R. Nicolaescu, S. Paek, J. Ko and P. V. Kamat, “Supersensitization of CdS Quantum Dots with a Near-Infrared Organic Dye-Toward the Design of Panchromatic Hybrid-Sensitized Solar Cells”, ACS Nano, 5, 9238, 2011.
256 H. Choi, P. K. Santra and P. V. Kamat, “Synchronized Energy and Electron Transfer Processes in Covalently Linked CdSe–Squaraine Dye–TiO2 Light Harvesting Assembly”, ACS Nano, 6, 5718–5726, 2012.
257 Z. Yang, C. Y. Chen, P. Roy and H. T. Chang, “Quantum Dot-sensitized Solar Cells Incorporating Nanomaterials”, Chem. Commun., 47, 9561–9571, 2011.
258 V. Chakrapani, D. Baker and P. V. Kamat, “Understanding the Role of the Sulfide Redox Couple S2--Sn2- in Quantum Dot-Sensitized Solar Cells”, J. Am. Chem. Soc., 133, 9607–9615, 2011.
259 J.-H. Bang and P. V. Kamat, “A Tale of Two Semiconductor Nanocrystals- CdSe and CdTe”, ACS Nano, 3, 1467–1476, 2009.
260 H. Zhu, N, Song and T. Lian, “Charging of Quantum Dots by Sulfide Redox Electrolytes Reduces Electron Injection Efficiency in Quantum Dot Sensitized Solar Cells”, J. Am. Chem. Soc., 135, 11461–11464, 2014.
261 P. V. Kamat, J. A. Christians and J. G. Radich, “Quantum Dot Solar Cells- Hole Transfer as a Limiting Factor in Boosting the Photoconversion Efficiency”, Langmuir, 30, 5716-5725,2014,.
262 Y. L. Lee and C. H. Chang, “Efficient Polysulfide Electrolyte for CdS Quantum Dot-sensitized Solar Cells”, J. Power Sources, 185, 584, 2008.
263 H. K. Jun, M. A. Careem and A. K. Arof, “A Suitable Polysulfide Electrolyte for CdSe Quantum Dot-Sensitized Solar Cells”, Int. J. Photoenergy, ID:942139, 2013.
264 S. Licht, R. Tenne, H. Flaisher and J. Manassen, “Cation Effects on the Electrochemistry of Anions in Polysulfide Photoelectrochemical Cells”, J. Electrochem. Soc, 133, 52-59, 1986.
265 L. Li, X. Yang, J. Gao, H. Tian, J. Zhao, A. Hagfeldt and L. Sun, “Highly Efficient CdS Quantum Dot-Sensitized Solar Cells Based on a Modified Polysulfide Electrolyte”, J. Am. Chem. Soc., 133, 8458–8460, 2011.
266 Z. Ning, H. Tian, C. Yuan, Y. Fu, L. Sun and H. Ågren, “Pure Organic Redox Couple for Quantum-Dot-Sensitized Solar Cells”, Chem.–Eur. J., 17, 6330, 2011.
267 H. J. Lee, P. Chen, S.-J. Moon, F. Sauvage, K. Sivula, T. Bessho, D. R. Gamelin, P. Comte, S. M. Zakeeruddin, S. I. Seok, M. Grätzel and M. K. Nazeeruddin, “Regenerative PbS and CdS Quantum Dot Sensitized Solar Cells with a Cobalt Complex as Hole Mediator”, Langmuir, 25, 7602, 2009.
268 I.-K. Ding, N. Tétreault, J. Brillet, B. E. Hardin, E. H. Smith, S. J. Rosenthal, F. Sauvage, M. Grätzel and M. D. McGehee, “Pore-Filling of Spiro-OMeTAD in Solid-State Dye Sensitized Solar Cells- Quantification, Mechanism, and Consequences for Device Performance”, Adv. Funct. Mater., 19, 2431–2436, 2009.
269 H. Kim, H. Jeong, T. K. An, C. E. Park and K. Yong, “Hybrid-Type Quantum-Dot Cosensitized ZnO Nanowire Solar Cell with Enhanced Visible-Light Harvesting”, ACS Appl. Mater. Interfaces, 5, 268–275, 2013.
270 G. Hodes, J. Manassen and D. Cahen, “Electrocatalytic Electrodes for the Polysulfide Redox System”, J. Electrochem. Soc., 127, 544, 1980.
271 Z. Tachan, M. Shalom, I. Hod, S. Rühle, S. Tirosh and A. Zaban, “PbS as a Highly Catalytic Counter Electrode for Polysulfide-Based Quantum Dot Solar Cells”, J. Phys. Chem. C, 115, 6162, 2011.
272 K. Zhao, H. Yu, H. Zhang and X. Zhong, “Electroplating Cuprous Sulfide Counter Electrode for High-Efficiency Long-Term Stability Quantum Dot Sensitized Solar Cells”, J. Phys. Chem. C., 118, 5683-5690, 2014.
273 M. Shalom, I. Hod, Z. Tachan, S. Buhbut, S. Tirosh and A. Zaban, “Quantum Dot Based Anode and Cathode for High Voltage Tandem Photo-electrochemical Solar Cell”, Energy Environ. Sci., 4, 1874–1878, 2011.
274 Y. Yang, L. Zhu, H. Sun, X. Huang, Y. Luo, D. Li and Q. Meng, “Composite Counter Electrode Based on Nanoparticulate PbS and Carbon Black: Towards Quantum Dot-Sensitized Solar Cells with Both High Efficiency and stability”, ACS Appl. Mater. Interfaces, 4, 6162–6168, 2012.
275 P. Parand, M. Samadpour, A. Esfandiar and A. I. Zad, “Graphene-PbS as a Novel Counter Electrode for Quantum Dot Sensitized Solar Cells”, ACS Photonics, 1, 323-330, 2014.
276 A. K. Geim and K. S. Novoselov, “The Rise of Graphene”, Nat. Mater., 6, 183, 2007.
277 X. Xin, M. He, W. Han, J. Jung and Z. Lin, “Low-Cost Copper Zinc Tin Sulfide Counter Electrodes for High-Efficiency Dye-sensitized solar cells”, Angew. Chem., Int. Ed., 50, 11739, 2011.
278 J. Xu, X. Yang, Q.-D. Yang, T.-L. Wong and C.-S. Lee, “Cu2ZnSnS4 Hierarchical Microspheres as an Effective Counter Electrode Material for Quantum Dot Sensitized Solar Cells”, J. Phys. Chem. C, 116, 19718–19723, 2012.
279 Y. B. Cao, Y. J. Xiao, J.-Y. Jung, H.-D. Um, S.-W. Jee, H. M. Choi, J. H. Bang and J.-H. Lee, “Highly Electrocatalytic Cu2ZnSn(S1–xSex)4 Counter Electrodes for Quantum-Dot-Sensitized Solar Cells”, ACS Appl. Mater. Interfaces, 5, 479, 2013.
280 X. W. Zeng, W. J. Zhang, Y. Xie, D. H. Xiong, W. Chen, X. B. Xu, M. K. Wang and Y.-B. Cheng, “Low-cost Porous Cu2ZnSnSe4 Film Remarkably Superior to Noble Pt as Counter Electrode in Quantum Dot-sensitized Solar Cell System”, J. Power Sources, 226, 359, 2013.
281 M. S. Faber, K. Park, M. Cabán-Acevedo, P. K. Santra and S. Jin, “Earth-Abundant Cobalt Pyrite (CoS2) Thin Film on Glass as a Robust, High-Performance Counter Electrode for Quantum Dot-Sensitized Solar Cells”, J. Phys. Chem. Lett., 4, 1843–1849, 2013.
282 X. Zhang, X. Huang, Y. Yang, S. Wang, Y. Gong, Y. Luo, D. Li and Q. Meng, “Investigation on New CuInS2-Carbon Composite Counter Electrodes for CdS-CdSe Cosensitized Solar Cells”, ACS Appl. Mater. Interfaces, 5(13), 5954, 2013.
283 M. P. Genovese, I. V. Lightcap and P. V. Kamat, “Sun-Believable Solar Paint. A Transformative One-Step Approach for Designing Nanocrystalline Solar Cells”, ACS Nano, 6, 865–872, 2012.
284 X. Z. Lan, J. Bai, S. Masala, S. M. Thon, Y. Ren, I. J. Kramer, S. Hoogland, A. Simchi, G. I. Koleilat, D. Paz-Soldan, Z. J. Ning, A. J. Labelle, J. Y. Kim, G. Jabbour and E. H. Sargent, “Self-Assembled, Nanowire Network Electrodes for Depleted Bulk Heterojunction Solar Cells”, Adv. Mater., 25, 1769–1773, 2013.
285 J. H. Dong, S. P. Jia, J. Z. Chen, B. Li, J. F. Zheng, J. H. Zhao, Z. J. Wang and Z. P. Zhu, “Nitrogen-doped Hollow Carbon Nanoparticles as Efficient Counter Electrodes in Quantum Dot Sensitized Solar Cells”, J. Mater. Chem., 22, 9745, 2012.
286 B. Fang, M. Kim, S. Q. Fan, J. H. Kim, D. P. Wilkinson, J. Ko and J. S. Yu, “Facile Synthesis of Open Mesoporous Carbon Nanofibers with Tailored Nanostructure as a Highly Efficient Counter Electrode in CdSe Quantum-dot-sensitized Solar Cell”, J. Mater. Chem., 21, 8742, 2011.
287 C. Wadia, A. P. Alivisatos and D. M. Kammen, “Materials Availability Expands the Opportunity for Large-Scale Photovoltaics Deployment”, Environ. Sci. Technol., 43, 2072–2077, 2009.
288 Y. C. Wang, D. Y. Wang, Y. T. Jiang, H. A. Chen, C. C. Chen, K. C. Ho, H. L. Chou and C. W. Chen, “FeS2 Nanocrystal Ink as a Catalytic Electrode for Dye-Sensitized Solar cells”, Angew. Chem., Int. Ed., 52, 6694, 2013.
289 J. Y. Lin, C.Y. Chan and S. W. Chou, “Electrophoretic Deposition of Transparent MoS2–graphene Nanosheet Composite Films as Counter Electrodes in Dye-sensitized Solar Cells”, Chem. Commun., 49, 1440-1442, 2013.
290 J. Y. Lin and S. W. Chou, “Highly Transparent NiCo2S4 Thin Film as an Effective Catalyst Toward Triiodide Reduction in Dye-sensitized Solar Cells”, Electrochem. Commun., 37, 11-14, 2013.
291 K. Willinger, K. Fischer, R. Kisselev and M. Thelakkat, “Synthesis, Spectral, Electrochemical and Photovoltaic Properties of Novel Heteroleptic Polypyridyl Ruthenium(II) Donor-antenna Dyes”, J. Mater. Chem., 19, 5364, 2009.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-05起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-05起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw