進階搜尋


下載電子全文  
系統識別號 U0026-2107201416330700
論文名稱(中文) 馬達自動化繞線系統之主動式張力控制研究
論文名稱(英文) Study on Active Tension Control of Automatic Motor Winding System
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 呂杰修
研究生(英文) Jie-Shiou Lu
學號 N26011110
學位類別 碩士
語文別 中文
論文頁數 88頁
口試委員 指導教授-鄭銘揚
口試委員-蔡明祺
口試委員-廖德祿
口試委員-周至宏
中文關鍵字 自動化繞線  張力控制  干擾量觀測器  反覆學習控制  滑動控制  反覆學習滑動控制 
英文關鍵字 automatic winding  tension control  disturbance observer  iterative learning control  sliding control  iterative learning sliding control 
學科別分類
中文摘要 如何提升馬達定子繞線品質為馬達繞線製程中之一重要問題,其中影響繞線品質之一重要因素為放線端的張力調節。目前市面上大多數繞線機均採用被動式張力調節裝置,難以達到精準之張力控制,有鑑於此,本論文將繞線機構加以改良,發展一主動式張力控制裝置,針對放線端馬達進行張力控制、而收線端馬達則進行位置控制以完成整體繞線製程。本論文針對收線端之運動規劃與位置控制、放線端之張力控制以及線捲動態做一全面性的分析與探討。於運動規劃方面,採用矩形軌跡並利用S型曲線進行收線端各軸向馬達之加減速規劃,期望降低機台振動情形,延長機台壽命且提升控制效能。由於馬達繞線為一高速製程,因此收線端位置控制的精準度亦十分重要,本論文採用前饋控制以加強位置控制之暫態響應。除此之外,定子繞線之整齊度為衡量繞線品質之一項重要指標,而繞線整齊與否則與放線端馬達之張力控制良劣有密切關係。本論文將研究重點著重在馬達自動化繞線機之張力控制問題,提出一反覆學習滑動控制器進行放線端馬達之張力控制,並藉由干擾量觀測器估測張力量值完成無感測器式張力控制。而由於放線端馬達會受到來自漆包線的干擾,故本論文也針對線捲動態做一分析,並將估測之線速度納入放線端張力控制以改善干擾量觀測器的落後現象。實際繞線結果顯示本論文所提出之反覆學習滑動控制器確實能改善放線端馬達之張力控制性能。
英文摘要 An important issue of motor winding process is how to improve the winding quality of the motor stator. In particular, one of the crucial factors that affect the winding quality is the tension regulation of the unwind roll. Most commercial motor winding machines use passive devices to adjust the wire tension of the winding system. However, accurate wire tension control is hard to achieve in this way. In order to cope with the aforementioned problem, this paper modifies the winding machine mechanism and develops an active tension control device. In particular, in the entire winding process, tension control of the unwind motor is performed so as to control wire tension, while the rewind motor is under position control. This thesis conducts an in-depth study on issues such as motion planning and position control of the rewind roll, tension control of the unwind roll and wire dynamics. In motion planning of the rewind roll, a rectangular trajectory is adopted and S-curve acceleration/deceleration is employed to suppress the vibration of the winding machine so as to extend its lifespan and furthermore improve the control performance. Due to high operating speed, position accuracy of the rewind roll has become very important; as such, this paper exploits the idea of feedforward control to enhance transient response of position control. In addition, whether the stator winding can be tidily arranged is a quality indicator of winding process, which closely depends on tension control performance of the unwind roll. Consequently, this thesis focuses on investigating the tension control problem of the automatic winding machine. An iterative learning sliding control scheme is proposed in this thesis to perform tension control of the unwind roll, while a disturbance observer is developed to estimate the wire tension in order to accomplish sensorless tension control. Moreover, since the motion of the unwind roll will be affected by motion of the enameled wire, the wire dynamics is also studied and analyzed. In particular, the estimated wire speed information is adopted in the tension control scheme to alleviate the lag phenomenon of the disturbance observer. Results of the winding experiments indicate that the proposed iterative learning sliding control scheme indeed can improve the tension control performance of the unwind roll.
論文目次 中文摘要 I
EXTENDED ABSTRACT II
誌謝 IX
目錄 X
表目錄 XII
圖目錄 XIII
第一章 緒論 1
1.1 簡介 1
1.2 研究動機與目的 2
1.3 文獻回顧 3
1.4 論文架構 5
第二章 馬達自動化繞線系統簡介 6
2.1 自動化繞線機基本工作原理 6
2.2 繞線運動規劃 7
2.3 主動式張力控制之馬達繞線裝置 9
2.4 馬達繞線控制架構 11
2.5 線捲動態分析 13
第三章 主動式馬達繞線控制演算法 18
3.1 收線端位置控制器 18
3.2 放線端干擾量觀測器 22
3.3 放線端前饋控制器 27
第四章 反覆學習滑動控制器之應用 31
4.1 滑動控制簡介 31
4.2 反覆學習控制簡介與文獻回顧 35
4.3 反覆學習滑動控制器 42
4.3.1 基於干擾量補償之反覆學習滑動控制器 42
4.3.2 反覆學習滑動控制器應用於繞線機張力控制 49
第五章 實驗設備與結果 52
5.1 實驗系統架構 52
5.2 位置控制實驗 58
5.3 反覆學習滑動控制器張力控制實驗 63
5.3.1 反覆學習滑動控制器參數比較 63
5.3.2 無感測器式反覆學習滑動控制器應用於張力控制 75
第六章 結論與建議 82
6.1 結論 82
6.2 未來展望與建議 83
參考文獻 84
參考文獻 [1]Y. Seki, K. Sekiguchi, Y. Anbe, K. Fukushima, Y. Tsuji, and S. Ueno, "Optimal multivariable looper control for hot strip finishing mill," IEEE Transactions on Industry Applications, vol. 27, pp. 124-130, 1991.
[2]S. H. Song and S. K. Sul, "A new tension controller for continuous strip processing line," IEEE Transactions on Industry Applications, vol. 36, pp. 633-639, 2000.
[3]K. C. Lin, "Observer-based tension feedback control with friction and inertia compensation," IEEE Transactions on Control Systems Technology, vol. 11, pp. 109-118, 2003.
[4]Y. Hou, Z. Gao, F. Jiang, and B. T. Boulter, "Active disturbance rejection control for web tension regulation," in Proceedings of the 40th IEEE Conference on Decision and Control, pp. 4974-4979, 2001.
[5]M. T. Yan and P. H. Huang, "Accuracy improvement of wire-EDM by real-time wire tension control," International Journal of Machine Tools and Manufacture, vol. 44, pp. 807-814, 2004.
[6]B. Wang, J. Zuo, M. Wang, and H. Hao, "Model reference adaptive tension control of web packaging material," in Proceedings of 2008 International Conference on Intelligent Computation Technology and Automation, pp. 395-398, 2008.
[7]Q. Liu, T. Chai, L. Zhao, Y. Zhang, and S. Zhang, "Modeling and gain scheduling adaptive control of tension control system for continuous annealing process," in Proceedings of the 48th IEEE Conference on Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC, pp. 5598-5603, 2009.
[8]T. T. Tran, K. H. Choi, D. E. Chang, and D. S. Kim, "Web Tension and velocity control of two-span roll-to-roll system for printed electronics," Journal of Advanced Mechanical Design, Systems, and Manufacturing, vol. 5, pp. 329-346, 2011.
[9]C. L. Chen, K. M. Chang, and C. M. Chang, "Modeling and control of a web-fed machine," Applied Mathematical Modelling, vol. 28, pp. 863-876, 2004.
[10]F. Janabi Sharifi and J. Liu, "Design of a self-adaptive fuzzy tension controller for tandem rolling," IEEE Transactions on Industrial Electronics, vol. 52, pp. 1428-1438, 2005.
[11]D. Knittel, A. Arbogast, M. Vedrines, and P. Pagilla, "Decentralized robust control strategies with model based feedforward for elasticwebwinding systems," in Proceedings of American Control Conference, pp. 1968-1975, 2006.
[12]V. Gassmann and D. Knittel, "H∞-based PI-observers for web tension estimations in industrial unwinding-winding systems," in Proceedings of the 17th IFAC World Congress, vol. 17, pp.1018-1023, 2008.
[13]S. S. Garimella and K. C. Srinivasan, "Application of iterative learning control to coil-to-coil control in rolling," IEEE Transactions on Control Systems Technology, vol. 6, pp. 281-293, 1998.
[14]H. Zhao and C. D. Rahn, "Iterative learning velocity and tension control for single span axially moving materials," Journal of Dynamic Systems, Measurement, and Control, vol. 130, p. 051003, 2008.
[15]S. J. Dodds and G. Sooriyakumar, "Observer based robust tension control for a segmented stator coil winding machine," in Proceedings of 2011 IEEE International Symposium on Industrial Electronics, pp. 1925-1930, 2011.
[16]S. H. Suh, S. K. Kang, D. H. Chung, and I. Stroud, "Acceleration and Deceleration," Theory and Design of CNC Systems, pp. 107-156, 2008.
[17]J. W. Jeon and Y. Y. Ha, "A generalized approach for the acceleration and deceleration of industrial robots and CNC machine tools," IEEE Transactions on Industrial Electronics, vol. 47, pp. 133-139, 2000.
[18]M. C. Tsai, M. Y. Cheng, K. F. Lin, and N. C. Tsai, "On acceleration/deceleration before interpolation for CNC motion control," in Proceedings of IEEE International Conference on Mechatronics, ICM'05., pp. 382-387, 2005.
[19]I. Choi, J. Rossiter, and P. Fleming, "Looper and tension control in hot rolling mills: A survey," Journal of Process Control, vol. 17, pp. 509-521, 2007.
[20]H. Kobayashi, S. Katsura, and K. Ohnishi, "An analysis of parameter variations of disturbance observer for motion control," IEEE Transactions on Industrial Electronics, vol. 54, pp. 3413-3421, 2007.
[21]T. Murakami, F. Yu, and K. Ohnishi, "Torque sensorless control in multidegree-of-freedom manipulator," IEEE Transactions on Industrial Electronics, vol. 40, pp. 259-265, 1993.
[22]M. C. Tsai, E. C. Tseng, and M. Y. Cheng, "Design of a torque observer for detecting abnormal load," Control Engineering Practice, vol. 8, pp. 259-269, 2000.
[23]J. S. Hu, D. Yin, and Y. Hori, "Fault-tolerant traction control of electric vehicles," Control Engineering Practice, vol. 19, pp. 204-213, 2011.
[24]O. Masory, "Improving contouring accuracy of NC/CNC systems with additional velocity feed forward loop," Journal of Engineering for Industry, vol. 108, pp. 227-230, 1986.
[25]B. C. Kuo and M. F. Golnaraghi, Automatic control systems, vol. 4: John Wiley & Sons New York, 2003.
[26]G. M. Clayton, S. Tien, K. K. Leang, Q. Zou, and S. Devasia, "A review of feedforward control approaches in nanopositioning for high-speed SPM," Journal of dynamic systems, measurement, and control, vol. 131, p. 061101, 2009.
[27]V. I. Utkin, "Sliding mode control design principles and applications to electric drives," IEEE Transactions on Industrial Electronics, vol. 40, pp. 23-36, 1993.
[28]J. Y. Hung, W. Gao, and J. C. Hung, "Variable structure control: a survey," IEEE Transactions on Industrial Electronics, vol. 40, pp. 2-22, 1993.
[29]S. Yu, X. Yu, B. Shirinzadeh, and Z. Man, "Continuous finite-time control for robotic manipulators with terminal sliding mode," Automatica, vol. 41, pp. 1957-1964, 2005.
[30]H.-S. Ahn, Y. Chen, and K. L. Moore, "Iterative learning control: brief survey and categorization," IEEE Transactions on Systems Man and Cybernetics part C Applications and Reviews, vol. 37, pp. 1099-1121, 2007.
[31]D. A. Bristow, M. Tharayil, and A. G. Alleyne, "A survey of iterative learning control," Control Systems, IEEE, vol. 26, pp. 96-114, 2006.
[32]M. Norrlöf and S. Gunnarsson, "Time and frequency domain convergence properties in iterative learning control," International Journal of Control, vol. 75, pp. 1114-1126, 2002.
[33]H. Elci, R. W. Longman, M. Phan, J.-N. Juang, and R. Ugoletti, "Discrete frequency based learning control for precision motion control," in Proceeding of the 1994 IEEE International Conference on Systems, Man, and Cybernetics, 1994. Humans, Information and Technology., pp. 2767-2773, 1994.
[34]J. Ghosh and B. Paden, "A pseudoinverse-based iterative learning control," IEEE Transactions on Automatic Control, vol. 47, pp. 831-837, 2002.
[35]A. Tayebi, "Adaptive iterative learning control for robot manipulators," Automatica, vol. 40, pp. 1195-1203, 2004.
[36]D. Sun and J. K. Mills, "High-accuracy trajectory tracking of industrial robot manipulator using adaptive-learning scheme," in Proceedings of the 1999 American Control Conference, pp. 1935-1939, 1999.
[37]K. H. Su , M. Y. Cheng , H. R. Chen, and Y. C. Chang, "Iterative Learning Control-based Tracking Error and Contour Error Compensations for Biaxial Contouring Control Systems," in Proceedings of the 5th International Conference on Positioning Technology, pp. 107-110, 2012.
[38]R. W. Longman, "Iterative learning control and repetitive control for engineering practice," International Journal of Control, vol. 73, pp. 930-954, 2000.
[39]M. S. Tsai, M. T. Lin, and H. T. Yau, "Development of command-based iterative learning control algorithm with consideration of friction, disturbance, and noise effects," IEEE Transactions on Control Systems Technology, vol. 14, pp. 511-518, 2006.
[40]J. S. Lu, M. Y. Cheng, L. W. Cheng, H. R. Chen, K. H. Su, M. C. Tsai, "Tension Control Improvement in Automatic Stator In-Slot Winding Machines Using Iterative Learning Control," in Proceedings of the International Conference on Information Science, Electronics and Electrical Engineering, vol. 3, pp. 1643-1647, 2014.
[41]K. Mainali, S. Panda, J. Xu, and T. Senjyu, "Repetitive position tracking performance enhancement of linear ultrasonic motor with sliding mode-cum-iterative learning control," in Proceedings of the IEEE International Conference on Mechatronics, ICM'04., pp. 352-357, 2004.
[42]C. T. Johnson and R. D. Lorenz, "Experimental identification of friction and its compensation in precise, position controlled mechanisms," IEEE Transactions on Industry Applications, vol. 28, pp. 1392-1398, 1992.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-07-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-07-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw