進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2107201414002200
論文名稱(中文) 探討地區層級與個人層級因素對運具選擇之影響-多層次模式之應用
論文名稱(英文) Exploring area- and individual-level determinants of mode choice - A multilevel modeling approach
校院名稱 成功大學
系所名稱(中) 交通管理科學系
系所名稱(英) Department of Transportation & Communication Management Science
學年度 102
學期 2
出版年 103
研究生(中文) 林羿汝
研究生(英文) Yi-Ru Lin
學號 R56011363
學位類別 碩士
語文別 英文
論文頁數 68頁
口試委員 指導教授-陳勁甫
口試委員-溫傑華
口試委員-孫雅彥
中文關鍵字 多層次模型  機車模式選擇  階層式層級  鑲嵌資料  多項邏輯特模型 
英文關鍵字 multilevel model  scooter mode choice  hierarchical-level  nested data  multinomial logit model 
學科別分類
中文摘要 更深入的了解不同地區個人運具選擇行為是為協助我們制定交通運輸政策,進而減少交通壅塞,空氣汙染,並提供良好運輸服務的一種方法。隨機車運具選擇模式行為逐漸受到愈來愈多的重視,此研究將探討台灣地區個人層級與地區層級因素相較於參考模式(私人運具或機車)對於其他運具選擇之影響,提供運具模式選擇行為的研究議題一些參考資料。
過去已經有將多項羅吉特模型應用到模式選擇的研究。然而,忽略了模式選擇資料中潛在的層級結構關係可能會造成一些限制,反映在鑲嵌資料的估計上。而多層次模型則可以克服這些限制,降低統計偏誤,提高統計檢定力。因此,此研究利用多層次模型來檢視多層級的因素對於台灣模式選擇行為的影響。此研究樣本資料包含居住在台灣20個縣市的24,832位受訪者,經由交通部統計處於2012年收集而來。此研究中個人層級的資料來自交通部統計處的資料,地區層級資料則是從內政部統計處,國家發展局及公路總局收集而來。
研究結果顯示對於參考模式,不同層級影響運具選擇模式的因素的確存在許多差異性,同時也驗證以多項羅吉特方程式呈現的模式選擇變數亦適用於多層次模型分析。個人運具選擇模式行為確實會與個人特徵與居住地區特徵有關係。大多數個人層級變數會顯著影響模式選擇,而地區層級變數則是隨運具選擇模式之不同而有其不同之影響因素。最後,希望藉由這些發現對於政策制定者制定交通政策來改變用路人之運具選擇以減少交通壅塞,空氣汙染是有幫助的。
英文摘要 Getting more understanding for individual mode choice in different areas is an appropriate way to support us to make transportation policies to reduce traffic congestion, air pollution, and provide a friendly transportation service. As scooter mode has been received more attention, we investigated the impact of individual- and area-level determinants on mode choice relative to reference mode (private vehicle or scooter) in Taiwan to provide some reference information for individual mode choice behavior.
Multinomial logit model has been used to analyze mode choice data. However, neglecting the possible existence of hierarchical structures with nested data could reflect limitations for the estimation. Multilevel model can overcome these limitations, then reduce statistical bias and improve statistical power. Thus, this research used multilevel models to identify the hierarchical-level determinants of mode choice in Taiwan. The study sample included 24,832 respondents with living in 20 cities/counties and was collected by Taiwanese Ministry of Transportation and Communication (MOTC) in 2012. Data on individual-level were provided from the department of Statistic, MOTC, and city-level data were provided from the Statistics Department of Ministry of Interior, National Development Council, and Directorate General of Highways, MOTC.
Results show variations for hierarchical-level determinants of mode choices relative to reference mode. And it also verifies that the outcome variables expressed in multinomial logit model can also be used in multilevel model analysis. Individual mode choice behaviors are associated with individual characteristics and area features where he/she lives. Most variables at individual-level have significant influence on each mode choice relative to reference mode. Among variables at area-level, each mode choice will be influenced by different determinants relative to reference mode. In the end, we hope these finding may be useful for policy-maker to make transportation policies to change individual mode choice for reducing traffic congestion, air pollution.
論文目次 CHAPTER 1 INTRODUCTION 1
1.1 BACKGROUND 1
1.1.1 THE HIERARCHICAL STRUCTURE ON MODE CHOICE 1
1.1.2 THE MODE CHOICE SITUATION IN TAIWAN 2
1.2 RESEARCH MOTIVATION AND OBJECTIVES 4
1.3 RESEARCH PROCEDURE 5
CHAPTER 2 LITERATURE REVIEW 6
2.1 MODELS OF MODE CHOICE 6
2.2 EFFECTS OF VARIABLES ON MODE CHOICE 7
2.2.1 OUTCOME VARIABLE 7
2.2.2 DETERMINANTS OF MODE CHOICE 9
2.2.3 VARIABLES OF ENVIRONMENTAL FACTOR 9
2.2.4 VARIABLES OF SES AND SOCIO-DEMOGRAPHIC FACTOR 11
2.2.5 VARIABLES OF TRIP CHARACTERISTICS AND MODE SPECIFIC FACTORS 13
2.2.6 VARIABLES OF TDM AND PSYCHOLOGICAL FACTOR 14
2.3 SUMMARY OF THE LITERATURE REVIEW 15
CHAPTER 3 METHODOLOGY 18
3.1 MULTILEVEL MODEL 18
3.1.1 MULTINOMIAL LOGIT (MNL) MODEL 18
3.1.2 HIERARCHICAL LINEAR MODELING (HLM) 19
3.1.3 MULTILEVEL MNL CONTEXTUAL MODEL 23
3.2 DATA SOURCE 24
3.3 VARIABLES DEFINITION 25
3.4 DATA ANALYSIS 29
3.5 MODEL SPECIFICATION 31
CHAPTER 4 RESULTS 35
4.1 RESULTS OF MODE CHOICE 37
4.1.1 RESULTS OF MODE CHOICE RELATIVE TO PRIVATE VEHICLES 37
4.1.2 RESULTS OF MODE CHOICE RELATIVE TO SCOOTERS 42
4.1.3 RESULTS OF MODE CHOICE AT SINGLE-LEVEL RELATIVE TO SCOOTERS 46
CHAPTER 5 CONCLUSIONS 48
5.1 CONCLUSIONS AND DISCUSSIONS 48
5.2 LIMITATIONS 52
5.3 FUTURE WORKS 53
REFERENCES 54
APPENDIX 58
參考文獻 Antipova, A., Wang, F., & Wilmot, C. (2011). Urban land uses, socio-demographic attributes and commuting: A multilevel modeling approach. Applied Geography, 31(3), 1010-1018.
Badoe, D. A., & Miller, E. J. (2000). Transportation–land-use interaction: empirical findings in North America, and their implications for modeling. Transportation Research Part D: Transport and Environment, 5(4), 235-263.
Ben-Akiva, M. E., & Lerman, S. R. (1985). Discrete choice analysis: theory and application to travel demand (Vol. 9): MIT press.
Bhat, C. R. (2000). A multi-level cross-classified model for discrete response variables. Transportation Research Part B: Methodological(34), 567±582.
Bhat, C. R., & Gossen, R. (2004). A mixed multinomial logit model analysis of weekend recreational episode type choice. Transportation Research Part B: Methodological, 38(9), 767-787.
Boarnet, M. G., & Sarmiento, S. (1998). Can land-use policy really affect travel behaviour? A study of the link between non-work travel and land-use characteristics. Urban Studies, 35(7), 1155-1169.
Cao, X., Mokhtarian, P. L., & Handy, S. L. (2009). The relationship between the built environment and nonwork travel: A case study of Northern California. Transportation Research Part A: Policy and Practice, 43(5), 548-559.
Cervero, R. (2002). Built environments and mode choice - toward a normative framework. Transportation Research Part D: Transport and Environment, 7(4), 265-284.
Cervero, R., & Kockelman, K. (1997). Travel demand and the 3Ds: density, diversity, and design. Transportation Research Part D: Transport and Environment, 2(3), 199-219.
Chatman, D. G. (2009). Residential choice, the built environment, and nonwork travel: evidence using new data and methods. Environment and planning. A, 41(5), 1072.
Chen, C., Gong, H., & Paaswell, R. (2007). Role of the built environment on mode choice decisions: additional evidence on the impact of density. Transportation, 35(3), 285-299.
Delmelle, E. M., & Delmelle, E. C. (2012). Exploring spatio-temporal commuting patterns in a university environment. Transport Policy, 21, 1-9.
Duncan, C., & Jones, K. (2000). Using multilevel models to model heterogeneity: potential and pitfalls. Geographical Analysis, 32(4), 279-305.
Eash, R. (1999). Destination and mode choice models for nonmotorized travel. Transportation Research Record: Journal of the Transportation Research Board, 1674(1), 1-8.
Ewing, R., & Cervero, R. (2001). Travel and the built environment: a synthesis. Transportation Research Record: Journal of the Transportation Research Board, 1780(1), 87-114.
Federal Transit Administration, F. H. A., US Environmental Protection Agency. (2003). Commuter Choice Primer- An Employer's Guide to Implementing Effective Commuter Choice Programs. Washington, DC.
Hearst, M. O., Sirard, J. R., Forsyth, A., Parker, E. D., Klein, E. G., Green, C. G., & Lytle, L. A. (2013). The relationship of area-level sociodemographic characteristics, household composition and individual-level socioeconomic status on walking behavior among adults. Transp Res Part A Policy Pract, 50, 149-157.
Jing-JingChuang. (2012). Exploring the Attribute Preferences of Destination among Impaired Tourists Using Leisure Constraints as Latent Variables. 成功大學交通管理科學系學位論文, 1-74.
Jou, R.-C., & Chen, T.-Y. (2014). Factors affecting public transportation, car, and motorcycle usage. Transportation Research Part A: Policy and Practice, 61, 186-198. doi: 10.1016/j.tra.2014.02.011
Kitamura, R., Mokhtarian, P. L., & Laidet, L. (1997). A micro-analysis of land use and travel in five neighborhoods in the San Francisco Bay Area. Transportation, 24(2), 125-158.
Klöckner, C. A., & Friedrichsmeier, T. (2011). A multi-level approach to travel mode choice – How person characteristics and situation specific aspects determine car use in a student sample. Transportation Research Part F: Traffic Psychology and Behaviour, 14(4), 261-277.
Koppelman, F. S., & Bhat, C. (2006). A Self Instructing Course in Mode Choice Modeling- Multinomial and Nested Logit Models. Prepared for US Department of Transportation Federal Transit Administration.
Kreft, I. G. G., & Leeuw, J. d. (1998). Introducing multilevel modeling: Sage.
Krizek, K. J. (2003). Residential Relocation and Changes in Urban Travel:Does Neighborhood-Scale Urban Form Matter? Journal of the American Planning Association, 69(3), 265-281. doi: 10.1080/01944360308978019
Lin, C.-H. (2011). Applying multilevel model to analyze severity level of motorped traffic accidents - A case study of Taipei city and Kaohsiung city. 成功大學交通管理科學系學位論文, 1-57.
Mercado, R., & Páez, A. (2009). Determinants of distance traveled with a focus on the elderly: a multilevel analysis in the Hamilton CMA, Canada. Journal of Transport Geography, 17(1), 65-76.
Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical Linear Models: Applications and Data Analysis Methods (Advanced Quantitative Techniques in the Social Sciences).
Schwanen, T., & Mokhtarian, P. L. (2005). What if you live in the wrong neighborhood? The impact of residential neighborhood type dissonance on distance traveled. Transportation Research Part D: Transport and Environment, 10(2), 127-151.
Snellen, D., Borgers, A., & Timmermans, H. (2002). Urban form, road network type, and mode choice for frequently conducted activities - a multilevel analysis using quasi-experimental design data. Environment and Planning A, 34, 1207 ^ 1220.
Sullivan, L. M., Dukes, K. A., & Losina, E. (1999). Tutorial in biostatistics- An introduction to hierarchical linear modeling. Statistics in Medicine, 18, 855-888.
Titheridge, H., & Hall, P. (2006). Changing travel to work patterns in South East England. Journal of Transport Geography, 14(1), 60-75.
Van Acker, V., Van Wee, B., & Witlox, F. (2010). When transport geography meets social psychology: Toward a conceptual model of travel behaviour. Transport reviews, 30(2), 219-240.
Van Acker, V., & Witlox, F. (2010). Car ownership as a mediating variable in car travel behaviour research using a structural equation modelling approach to identify its dual relationship. Journal of Transport Geography, 18(1), 65-74.
Whalen, K. E., Páez, A., & Carrasco, J. A. (2013). Mode choice of university students commuting to school and the role of active travel. Journal of Transport Geography, 31, 132-142.
Winters, M., Friesen, M. C., Koehoorn, M., & Teschke, K. (2007). Utilitarian bicycling: a multilevel analysis of climate and personal influences. Am J Prev Med, 32(1), 52-58. doi: 10.1016/j.amepre.2006.08.027
Woltman, H., Feldstain, A., MacKay, J. C., & Rocchi, M. (2012). An introduction to hierarchical linear modeling. Tutorials in Quantitative Methods for Psychology, 8(1), 52-69.
Zhou, J. (2012). Sustainable commute in a car-dominant city: Factors affecting alternative mode choices among university students. Transportation Research Part A: Policy and Practice, 46(7), 1013-1029.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-04起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw