進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2107201410283200
論文名稱(中文) 垂直軸風機配置對於風機陣列流場與噪音之影響
論文名稱(英文) Effect of Vertical Axis Wind Turbine Configuration on Flow Fields and Noise Around Turbine Arrays
校院名稱 成功大學
系所名稱(中) 航空太空工程學系
系所名稱(英) Department of Aeronautics & Astronautics
學年度 102
學期 2
出版年 103
研究生(中文) 嚴明煜
研究生(英文) Ming-Yu Yen
學號 p46011555
學位類別 碩士
語文別 中文
論文頁數 122頁
口試委員 指導教授-黃啟鐘
口試委員-林三益
口試委員-尤芳忞
中文關鍵字 垂直軸風機陣列  分離渦漩模型  交互作用  噪音  功率係數 
英文關鍵字 VAWT arrays  DES model  Interaction  Noise  Power coefficient 
學科別分類
中文摘要 近年來,風機之研究日趨重要。本論文使用商業套裝軟體FLUENT探討多顆直立葉片式垂直軸風機的配置對於風機陣列流場與噪音之影響
。使用SIMPLEC/QUICK之數值方法、SST k-ω與DES(Detached Eddy Simulation)分離渦漩模型在四邊形/三角形網格上求解非穩態二維不可壓縮納維史托克方程式(Navier-Stokes Equations),並採用聲場模型FW-H方程式(Ffowcs Williams and Hawkings Equation)計算流場中之噪音分貝值。在不同風機陣列排列間距與位置下,對翼型為NACA0015之雙顆與四顆風機進行流場模擬計算。探討流場現象與風機之功率係數,並與相關文獻之實驗結果比較。在噪音研究方面,計算不同位置之聲音分貝值,以了解風機噪音值隨著距離不同之變動情形和最大與最小噪音下觀測點之方位。藉由本文之結果,風機陣列流場交互作用及阻塞效應是被探討。只要排列方式適當,便可使風機的功率係數獲得提升。
英文摘要 In the recent years, the study of wind turbine become important. In this study, the commerical software package FLUENT is used to investigate the effect of Straight-Bladed Vertical Axis Wind Turbines configuration on flow fields and on the noise around turbine arrays. The SIMPLEC/QUICK method, SST k-ω and Detached Eddy Simulation models are adopted to solve unsteady two dimensional incompressible Navier-Stokes Equations on the quadrilateral/triangular meshes. To calculte the decibel value of acoustic field, the Ffowcs Willams and Hawkings equation is introduced. Under the different turbine array arrangement, the flow fields around two and four wind turbines with NACA0015 blade are simulated, and the flow phenomena and power coefficient of wind turbines are obtained. The results are compared with the experimental results in the related literatures. In the study of noise, the sound decibels at various locations are computed. The variation of magnitude of sound pressure level with distance and direction of observation point with maximum and minimum values are observed. According to the present results, the flow interaction and blockage effects around the turbine arrays are investigated. With the turbine array being appropriately arranged, the power coefficient of the wind turbines can be increased.
論文目次 目錄
摘要 I
Abstract II
英文延伸摘要 IV
誌謝 VIII
目錄 IX
表目錄 XII
圖目錄 XIII
主要符號說明 XVII
第一章 緒論 1
1-1 前言 1
1-2 動機與目的 1
1-3 文獻回顧 3
1-4 基礎理論 6
1-4-1 Betz極限 6
1-4-2 座標系統 7
1-5 研究內容 8
第二章 數值方法與數學模型 9
2-1 數值方法 9
2-1-1 統御方程式 9
2-1-2 SIMPLEC演算法 11
2-1-3 QUICK法 13
2-2 DES模型 14
2-3 噪音模型 15
2-3-1 Ffowcs Williams and Hawkings方程式 15
2-3-2 聲壓值 16
第三章 網格建立及流場邊界條件與參數設定 18
3-1 NACA015之雙顆風機流場模擬 18
3-1-1 風機間距(x/D,y/D)=(1.5,-1.5)之網格建立 18
3-1-2 NACA0015之雙顆風機流場邊界條件與參數設定 19
3-1-3 風機間距(x/D,y/D)=(1.2,-1.2)之網格建立 20
3-1-4 NACA0015之雙顆風機流場邊界條件與參數設定 21
3-1-5 風機間距(x/D,y/D)=(1.2,1.2)之網格建立 23
3-1-6 NACA0015之雙顆風機流場邊界條件與參數設定 24
3-2 NACA0015之四顆風機流場網格模擬 25
3-2-1 風機間距(x/D,y/D)=(1.2,-1.2)之網格建立 25
3-2-2 NACA0015之四顆風機流場邊界條件與參數設定 27
3-2-3 風機間距(x/D,y/D)=(2√2,1.2)之網格建立 28
3-2-4 NACA0015之四顆風機流場邊界條件與參數設定 29
3-2-5 風機間距(x/D,y/D)=(1.2,1.2)之網格建立 31
3-2-6 NACA0015之四顆風機流場邊界條件與參數設定 32
3-2-7 風機間距(x/D,y/D)=(2√2,−1.2)之網格建立 33
3-2-8 NACA0015之四顆風機流場邊界條件與參數設定 35
第四章 結果與討論 37
4-1 NACA0015之雙顆風機流場與聲場模擬探討 37
4-2 NACA0015之四顆風機流場與聲場模擬探討 40
第五章 結論與建議 44
5-1 結論 44
5-2 建議 46
5-2-1 網格、流場、邊界條件與參數設定 46
5-2-2 未來研究 47
參考文獻 49
參考文獻 參考文獻
[1] Iida, A., Mizuno, A., and Fukudome, K., “Numerical Simulation of Aerodynamic Noise Radiated from Vertical Axis Wind Turbines, ”Proceedings of the 18th International Congress on Acoustics, 2004, CD-ROM.
[2] Carlos, Simao F., Gerard, van B., and Gijs, van K., “Simulating Dynamic Stall in a 2D VAWT: Modeling Strategy, Verification and Validation with Particle Image Velocimetry Data, ”Journal of Physicsl, 2007.
[3] Carlos, Simao F., Gerard, van B., and Gijs van K., “2D CFD Simulation of Dynamic Stall on a Vertical Axis Wind Turbine: Verification and Validation with PIV Measurements, ”AIAA, 2007.
[4] Mazharul, I., David T., and Amir, F., “Aerodynamic Models for Darrieus Type Straight Bladed Vertical Axis Wind Turbines. ”Renewable and Sustainable Energy Reviews, 2008.
[5] Mazharul, I., Amir, F., and Rupp, C., “Analysis of the Design Parameters Related to a Fixed-Pitch Straight-Bladed Vertical Axis Wind Turbine, ”Wind Engineering, Vol.32, pp. 491-507, 2008.
[6] Sylvain, A., Thierry, M., and Jean-Luc A., “Hydraulic Darrieus Turbines Efficiency for Free Fluid Flow Conditions versus Power Farms Conditions, ”Renewable Energy, Vol.33, pp.2186-2198, 2008.
[7] Ame, E., Maître, T., Pellone, C., and Achard, L., “2D Numerical Simulations of Blade-Vortex Interaction in a Darrieus Turbine,” ASME, Vol.131, 2009.
[8] Shengyi, W., Lin, M., Derek, B. I., Mohamed, P., and Zhi, T., “Turbulence Modelling of Deep Dynamic Stall at Low Reynolds Number, ”Proceedings of the World Congress on Engineering Vol.II, 2010.
[9] Robert, W. W., Sebastian, L., and John O. D., “Fish schooling as a basis for vertical axis wind turbine farm design, ” IOP, 2010.
[10] Akinari, S., Yuichi, M., Yuji, T., and Yasushi, T., “Interactive Flow Field around Two Savonius Turbines, ” Renewable Energy, Vol.36, pp.536-545, 2011.
[11] John, O. D., “Potential Order-of-Magnitude Enhancement of Wind Farm Power Density via Counter-Rotating Vertical-Axis Wind Turbine Arrays, ”Journal of Renewable and Sustainable Energy, Vol.3, pp. 043104-1-043104-12, 2011.
[12] Kjellin, J., Bulow, F., Eriksson, S., Deglaire, P., Leijon, M., and Bernhoff, H., “Power Coefficient Measurement on a 12 kW Straight Bladed Vertical Axis Wind Turbine, ” Renewable Energy, Vol.36, pp.3050-3053, 2011.
[13] Marco, R. C., Alessandro, E., and Ernesto, B., “The Darrieus Wind Turbine : Proposal for a New Performance Prediction Model Based on CFD, ” Energy, Vol.36, pp.4919-4934, 2011.
[14] Huimin, W., Jianliang, W., Ji, Y., Weibin, Y., and Liang, C., “Analysis on the Aerodynamic Performance of Vertical Axis Wind Turbine Subjected to the Change of Wind Velocity, ”SciVerse ScienceDirect, Vol.31, pp.213-219, 2012.
[15] Liang, C., Huimin, W., Jianliang, W., Ji, Y., and Weibin, Y., “Analysis on the Influence of Rotational Speed to Aerodynamic Performance of Vertical Axis Wind Turbine, ”SciVerse ScienceDirect, Vol.31, pp.245-250, 2012.
[16] Ji, Y., Jianliang, W., Weibin, Y., Huimin, W., and Liang, C., “Analysis on the Influence of Turbulence Model Changes to Aerodynamic Performance of Vertical Axis Wind Turbine.”SciVerse ScienceDirect, Vol.31, pp.274-281, 2012.
[17] Matthias, K., Quinn, M., and John, O. D., “Energy exchange in an array of vertical-axis wind turbines. ”Journal of Turbulence, Vol. 13, No. 38, 2012, 1–13.
[18] Ansys Fluent User Guide, Ver.13,Ansys Inc.
[19] Van, D, J. P., and Raithby, G. D., “Enhancements of the SIMPLE Methods for Predicting Incompressible Fluid Flows, ”Num. Heat Mass Transfer, Vol. 7, pp. 147-163, 1984.
[20] 陳明揚,“多顆小型垂直軸風機流場之數值研究, ”國立成功大學碩士論文, 2012.
[21] 余昆昇,“垂直軸風機陣列流場與噪音之數值研究, ”國立成功大學碩士論文, 2013.
[22] World Wind Energy Association, “World Wind Energy Report. ” World Wind Energy Association, 2010.
[23] “再生能源發電概況, ”台灣電力公司, 2011.
[24] 謝承翰, “垂直軸風力機扭力與功率的檢測與模擬, ”成功大學碩士論文, 2009.
[25] Anthony, L. R., James, F. M., and Sally W. M. S., “Wind Turbine Acoustic Noise, ” Renewable Energy Research Laboratory, pp. 413-545-4359, 2006.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-07-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw