進階搜尋


下載電子全文  
系統識別號 U0026-2107201302022400
論文名稱(中文) 鈷成長於氧化鋅表面(10-10)結構與化學特性之研究
論文名稱(英文) The structural and chemical properties of Co growth on ZnO (10-10) surface
校院名稱 成功大學
系所名稱(中) 物理學系碩博士班
系所名稱(英) Department of Physics
學年度 101
學期 2
出版年 102
研究生(中文) 蘇書玄
研究生(英文) Shu Hsuan Su
學號 L28951047
學位類別 博士
語文別 英文
論文頁數 108頁
口試委員 指導教授-黃榮俊
召集委員-呂欽山
口試委員-吳忠霖
口試委員-何孟書
口試委員-余進忠
中文關鍵字 氧化鋅    掃描穿隧電子顯微鏡  反射式高能量電子繞射儀  X光電子能譜儀  紫外光光電子能譜儀  成長行為  金屬-氧化物介面。 
英文關鍵字 ZnO  cobalt  scanning tunneling microscopy  reflection high-energy electron diffraction  X-ray photoelectron spectroscopy  ultraviolet photoelectron spectroscopy  growth mode  metal-oxide interface 
學科別分類
中文摘要 本論文的研究主要是以掃描穿隧電子顯微鏡、反射式高能量電子繞射儀、X光電子能譜儀和紫外光光電子能譜儀來研究鈷成長於氧化鋅表面(10-10)的結構與化學性質之特性。在鈷成長的行為上,厚度較薄的鈷薄膜(~0.5 ML)會形成氧化鈷(2×1)的有序結構。當鈷薄膜的厚度增加至0.7 ML到1 ML時,表面的特徵會轉變成以條紋結構為主;然而當鈷薄膜的厚度再增加時(~3 ML),鈷金屬的團簇將開始於表面上形成。在變化鈷薄膜厚度對化學態的影響研究中顯示,當薄膜厚度於半個原子層時,其初步鈷的化學態為氧化鈷和鈷金屬的混合態;隨著鈷薄膜厚度的增加時,其化學態逐漸地轉變成鈷金屬態為主。由研究結果所表示鈷薄膜初始的成長行為是類二維的型式,隨著鈷薄膜厚度增加時,則轉變為三維型式的成長。
此外,鈷在氧化鋅表面(10-10)的退火過程中,其聚核與燒結的行為已被仔細地研究。在鈷薄膜厚度與退火溫度的調變範圍下將會影響鈷奈米團簇的尺寸分佈,而吸附的鈷原子其燒結特性會受奧斯瓦爾德熟化效應的影響,且這行為會受到鈷薄膜的厚度所影響。在改變退火溫度對化學態的研究中顯示,在退火過程中,鈷薄膜皆維持以金屬態為主,相較於鈷成長於氧化鋅表面(0001)和(000-1)的系統而言,更具有熱穩定性的特性。此外,退火時間的改變對吸附的鈷原子分佈影響已經藉由掃描穿隧電子顯微鏡來觀察並分析其結果。因此鈷/氧化鋅(10-10)之熱穩定性的研究結果,將對於實際的催化過程上具有潛在的影響性。
英文摘要 This study elucidates the epitaxial growth structure and chemical state of Co on ZnO (10-10) surface by using scanning tunneling microscopy (STM), reflection high-energy electron diffraction (RHEED), X-ray photoelectron spectroscopy (XPS), and ultraviolet photoelectron spectroscopy (UPS). In the growth behavior, the well-ordered cobalt oxide (CoOx) (2×1) structure is formed at 0.5 ML Co coverage. Increasing the Co coverage from 0.7 ML to 1 ML allows for the surface characterization by Co stripe structure, while the Co metallic clusters are clearly developed above 3 ML Co coverage. Coverage-dependent measurements of the Co chemical state indicate that the initial Co mixed oxidation and metallic state at submonolayer and gradually transfers to a metallic Co dominated state. The results also suggest that initial growth mode is two dimensional (2D) like and bridged to three dimensional (3D) at higher Co coverages.
Furthermore, the nucleation and sintering characteristics of Co on ZnO (10-10) during annealing were investigated. The extent of coverage and annealing temperature were varied to modify the size of the Co nanoclusters. The Ostwald ripening process induces the observed sintering behavior of Co adatoms, which depend on the Co coverage. Temperature-dependent X-ray photoemission spectra of the Co chemical state reveal that metallic Co dominates the annealing procedure on ZnO (10-10), and is more thermally stable than Co on both ZnO (0001) and ZnO (000-1). The effects of annealing time and the distribution of Co adatoms were elucidated by STM. Therefore, the results have potential implications for the thermal stability of Co/ZnO (10-10) in real catalytic processes.
論文目次 摘要…………………………………………………………………I
Abstract…………………...……………………...…………….III
Acknowledgements........................................................................IV
Contents……………………………………………………….......V
List of Tables………..…..……………………………………...VIII
List of Figures……………..………………..………....................IX
Chapter 1 Introduction…………………………………………...1
1.1 The Surface Science of metal on oxide surface…....…….........................1
1.2 Introduction of ZnO surface ……………………………..……..….……4
1.3 Paper reviews of the metal-deposited on ZnO surface…......................…8
1.3.1 Reviews of Co-deposited on polar ZnO surface……...……..…….8
1.3.2 Reviews of metal-deposited on ZnO (10-10) surface….…….…..13
1.4 Motivation……………………………………………………………...34
References…………………..……………………………………………...35

Chapter 2 Theoretical aspects of instrumentation………………39
2.1 Scanning Tunneling Microscopy (STM)……………………….…...….39
2.1.1 Operation principle of STM…………………………………...…..40
2.1.2 Scanning tunneling spectroscopy (STS)…………………..…….43
2.2 X-ray Photoemission Spectroscopy (XPS)………………..……………45
2.3 Photoelectron Spectroscopy (PES)………………………………..……50
References……………………………………………………………...54
Chapter 3 Experimental equipment……………………………...55
3.1 JEOL SPM System…………….……………………………………….55
3.2 Preparation of STM tip…………………………………………………58
3.3 Evaporator……………...…..…………………………………………..60
3.4 Photoelectron Spectroscopy (PES) system……………………………..62

Chapter 4 Elucidating structure and chemical state of Co growth
on ZnO(10-10) surface………………………….……63
4.1 Introduction….…………………..…………..…………………………64
4.2 Experiment………………..……………………………………………66
4.3 STM studies of Co on the ZnO (10-10) surface……………………….68
4.4 XPS characterization of Co on the ZnO (10-10) surface……….…….73
4.5 UPS characterization of Co on the ZnO (10-10) surface……………..78
4.6 Discussion…………………..………………………………………….80
4.7 Summary…………..…………………………………………………...84
References…………………………………......…………………………...85

Chapter 5 Thermally Activated Interaction of Co Growth with ZnO(10-10) surface.......................................................88
5.1 Introduction............................................................................................89
5.2 Experiment..............................................................................................90
5.3 The STM results of various Co coverages on ZnO(10-10) upon
annealing…………….………………………………………………92
5.4 The XPS of results of various Co coverages on ZnO(10-10) upon
annealing...............................................................................................94
5.5 The STM results of Co on ZnO (10-10) with various annealing time....98
5.6 Discussion.............................................................................................100
5.7 Summary................................................................................................103
References…………………………………......………………………….104

Chapter 6 Conclusion………..….......................................……107
參考文獻 Chapter 1.
[1] http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2007/
[2] S. Jakubith, H. H. Rotermund, W. Engel, A. von Oertzen, G. Ertl, Phys. Rev. Lett. 65, 3013 (1990).
[3] E. Weissenbek, H.E. Pettermann, S. Suresh, Acta mater. 45, 3401 (1997).
[4] X. Deng, N. Chawla, K. K. Chawla, M. Koopman, J. P. Chu, Adv. Eng. Mater. 7, 1099 (2005).
[5] W. G. Fahrenholtz, K. G. Ewsuk, D. T. Ellerby, R. E. Loehman, J. Am. Ceram. Soc. 79, 2497 (1996).
[6] F. Gao, S. J. Lee, D. Z. Chi, S. Balakumar, D.-L. Kwong, Appl. Phys. Lett. 90, 252904 (2007).
[7] J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart, R. S. Williams, Nature Nanotech. 3, 429(2008).
[8] K. Natori, J. Appl. Phys. 76, 4879 (1994).
[9] M.-K. Liang, O. Deschaume, S. V. Patwardhana, C. C. Perry, J. Mater. Chem. 21, 80 (2011).
[10] A. Vallee, V. Humblot, C.-M. Pradier, Acc. Chem. Res. 43, 1297 (2010).
[11] P. D. Ye, G. D. Wilk, B. Yang, J. Kwo, S. N. G. Chu, S. Nakahara, H.-J. L. Gossmann, J. P. Mannaerts, M. Hong, K. K. Ng, J. Bude, Appl. Phys. Lett. 83, 180 (2003).
[12] C.-T. Lee, H.-W. Chen, H.-Y. Lee, Appl. Phys. Lett. 82, 4304 (2003).
[13] A. Lajn, H. v. Wenckstern, Z. Zhang, C. Czekalla, G. Biehne, J. Lenzner, H. Hochmuth, M. Lorenz, M. Grundmann, S. Wickert, C. Vogt, R. Denecke, J. Vac. Sci. Technol. B 27, 1769 (2009).
[14] L. Vayssieres, K. Keis , S.-E. Lindquist , A. Hagfeldt, J. Phys. Chem. B 105, 3350 (2001).
[15] M.-Y. Lu, J. Song, M.-P. Lu,C.-Y. Lee, L.-J. Chen, Z. L. Wang, ACS Nano 3, 357 (2009).
[16] E. W. McFarland, J. Tang, Nature 421, 616 (2003).
[17] G. Kyriakou, M. B. Boucher, A. D. Jewell, E. A. Lewis, T. J. Lawton, A. E. Baber, H. L.Tierney, M. Flytzani-Stephanopoulos, E. C. H. Sykes, Science 335, 1209 (2012).
[18] M. Valden, X. Lai, D. W. Goodman, Science 281, 1647 (1998).
[19] J. A. Farmer, C. T. Campbell, Science 329, 933 (2010).
[20] J. P. Breen, R. Burch, H. M. Coleman, Appl. Catal. B 39, 65 (2002).
[21] F. Ernst, Mater. Sci. Eng. R 14, 97 (1995).
[22] U. Diebold, J.M. Pan, T.E. Madey, Surf. Sci. 845, 331 (1995).
[23] C.R. Henry, Surf. Sci. Rep. 231, 31 (1998).
[24] C. Wöoll, Prog. Surf. Sci. 82, 55 (2007).
[25] U. Heinz, U. Landmann, Nanocatalysis, Springer, Berlin, (2007).
[26] H. M. Chen, C.K. Chen, C.C. Lin, R.-S. Liu, H. Yang, W.-S. Chang, K.-H. Chen, T.-S. Chan, J.-F. Lee, D.P. Tsai, J. Phys. Chem. C 115, 21971 (2011).
[27] X.D. Wang, C. Summers, Z. L. Wang, Nano Lett. 4, 423 (2004).
[28] A. Wei, L. Pan, W. Huang, Mater. Sci. Eng. B 176, 1409 (2011).
[29] Z.K. Tang, G.K.L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Appl. Phys. Lett. 72, 3270 (1998).
[30] J.C. Johnson, H. Yan, R. D. Schaller, P. Yang, P. B. Petersen, R.J. Saykally, Nano Lett. 2, 279 (2002).
[31] M.S. Arnold, P. Avouris, Z.W. Pan, Z.L. Wang, J. Phys. Chem. B 107, 659 (2003).
[32] Z.Y. Fan, D.W. Wang, P.C. Chang, W.Y. Tseng, J.C. Lu, Appl. Phys. Lett. 85, 5923 (2004).
[33] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, T. Steiner, Prog. Mater. Sci. 50, 293 (2005).
[34] U. Özgür, Y.I. Alivov, C. Liua, A. Teke, M.A. Reshchikov, S. Dogän, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005).
[35] S. Ghimire, A.D. DiChiara, E. Sistrunk, U.B. Szafruga, P. Agostini, L.F. DiMauro, D.A. Reis, Phys. Rev. Lett. 107, 167407 (2011).
[36] M. Law, L.E. Greene, J.C. Johnson, R. Saykally, Peidong Yang, Nat. Mater. 4, 455 (2005).
[37] M.S. White, D.C. Olson, S.E. Shaheen, N. Kopidakis, D.S. Ginley, Appl. Phys. Lett. 89, 143517 (2006).
[38] K.S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J.E. Boercker, C.B. Carter, U.R. Kortshagen, D.J. Norris, E.S. Aydil, Nano Lett. 7, 1793 (2007).
[39] H. Karzel, W. Potzel, M. Kofferlein, W. Schiessl, M. Steiner, U. Hiller, G. M. Kalvius, D. W. Mitchell, T. P. Das, P. Blaha, K. Schwarz, M. P. Pasternak, Phys. Rev. B 53, 11425 (1996).
[40] 賴柜宏,國立成功大學博士論文 (2010).
[41] B. Meyer and D. Marx, Phys. Rev. B 67, 035403 (2003).
[42] A. Wander, N. M. Harrison, Surf. Sci. 457, L342 (2000).
[43] G. Kresse, O. Dulub, and U. Diebold, Phys. Rev. B 68, 245209 (2003).
[44] A. Wander, N. M. Harrison, Surf. Sci. 468, L851 (2000).
[45] A. Wander, F. Schedin, P. Steadman, A. Norris, R. McGrath, T.S. Turner, G. Thornton, N. M. Harrison, Phys. Rev. Letts. 86, 3811 (2001).
[46] U. Diebold, L. V. Koplitz, O. Dulub, Appl.Surf. Sci. 237, 336 (2004).
[47] M. P. Hyman, E. Martono, J. M. Vohs, J. Phys. Chem. C 114, 16892 (2010).
[48] C. T. Campbell Surf. Sci. Rep. 27, 1 (1997).
[49] W. G. Xie, F. Y. Xie, X. L. Yu, K. Xue, J. B. Xu, J. Chen, R. Zhang, Appl. Phys. Lett. 95, 262506 (2009).
[50] J. Dumont, M. C. Mugumaoderha, T. Seldrum, F. Frising, C. Moisson, D. Turover, R. Sporken J. Vac. Sci. Technol. B 25, 1536 (2007).
[51] J. Llorca, J. A. Dalmon, P. R. de la Piscina, N. Homs, Appl. Catal. A 243, 261 (2003).
[52] S. M. Heald, T. Kaspar, T. Droubay, V. Shutthanandan, S. Chambers, A. Mokhtari, A. J. Behan, H. J. Blythe, J. R. Neal, A. M. Fox, G. A. Gehring, Phys. Rev. B 79,
075202 (2009).
[53] X. H. Han, G. Z. Wang, J. S. Jie, X. L. Zhu, J. G. Hou, Thin Solid Films 491, 249 (2005).
[54] K. Kobayashi, T. Maeda, S. Matsushima, G. Okada, J. Mater. Sci. Lett. 12, 168 (1993).
[55] Y. F. Liao, T. W. Huang, J. C. A. Huang, C. H. Lee, IEEE Transactions on Magnetics 45, 2431 (2009).
[56] K. Ueda, H. Tabata, T. Kawai, Appl. Phys. Lett. 79, 988 (2001).
[57] H. Wei, T. Yao, Z. Y. Pan, C. Mai, Z. H. Sun, Z. Y. Wu, F. C. Hu, Y. Jiang, W. S. Yan, J. Appl. Phys.105, 043903 (2009).
[58] Q. Y. Xu, S. Zhou, D. Marko, K. Potzger, J. Fassbender, M. Vinnichenko, M. Helm, H. Hochmuth, M. Lorenz, M. Grundmann, H. Schmidt, J. Phys. D-Appl. Phys.
42, 085001 (2009).
[59] X. J. Ye, D. L. Hou, W. Zhong, C. T. Au, Y. W. Du, Sci. Chin. Ser. G-Phys. Mech. Astron. 52, 21 (2009).
[60] O. Dulub, L. A. Boatner, U. Diebold, Surf. Sci. 504, 271 (2002).
[61] K. Ozawa, T. Sato, Y. Oba, K. Edamoto, J. Phys. Chem. C 111, 4256 (2007).
[62] M. Kroll, T. Löber, V. Schott, C. Wöll, U. Köhler, Phys. Chem. Chem. Phys. 14, 1654 (2012).
[63] M. Kroll, U. Köhler, Surf. Sci. 601, 2182 (2007).
[64] J. Haber, T. Machej, L. Ungier, J. Ziolkowski, J. Solid State Chem. 25, 207 (1978).
[65] G. Deroubaix, P. Marcus, Surf. Interface Anal. 18, 39 (1992).
[66] K. Ozawa, T. Sato, M. Kato, K. Edamoto, Y. Aiura, J. Phys. Chem. B 109, 14619 (2005).
[67] K. Ozawa, K. Edamoto, Surf. Sci. 524, 78 (2003).
[68] K. Ozawa, K. Edamoto, Surf. Sci. 547, 257 (2003).
[69] K. Ozawa, T. Sato, e-J. Surf. Sci. Nanotech. 3, 299 (2005).
[70] P. H. Citrin, Phys. Rev. B 8, 5545 (1973).
[71] J. Llorca, N. Homs, J. Sales, P. R. de la Piscina, J. Catal. 209, 306 (2002).
[72] B. Banach, A. Machocki, P. Rybak, A. Denis, W. Grzegorczyk, W. Gac, Catal. Today 176, 28 (2011).
[73] H. S. Roh, Y. Wang, D. L. King, A. Platon, Y. H. Chin, Catal. Lett. 108, 15 (2006).
[74] J. P. Breen, R. Burch, H. M. Coleman, Appl. Catal. B 39, 65 (2002).
[75] J. Rasko, A. Hancz, A. Erdohelyi, Appl. Catal. A 269, 13 (2004).
[76] J. Llorca, J. A. Dalmon, P. R. de la Piscina, N. Homs, Appl. Catal. A 243, 261 (2003).
[77] H. Song, U. S. Ozkan, J. Catal. 261, 66 (2009).
[78] J. Llorca, P. R. de la Piscina, J. A. Dalmon, J. Sales, N. Homs, Appl. Catal., B 43, 355 (2003).
[79] J. Llorca, J. A. Dalmon, P. Ramírez de la Piscina, N. Homs, Appl. Catal. A, 243, 261 (2003).

Chapter 2.
[1] http://www.nobelprize.org/nobel_prizes/physics/laureates/1986/
[2] G. Binnig, H. Rohrer, IBM J. Res. Develop. 30, 355 (1986).
[3] G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, Phys. Rev. Lett. 50, 120 (1983).
[4] M. Schmid, http://www.iap.tuwien.ac.at/www/surface/stm_gallery/stm_schematic, (2005).
[5] R. J. Harners, Annu. Rev. Phys. Chem. 40, 531 (1989).
[6] A. M. Moore, P. S. Weiss, Annu. Rev. Anal. Chem. 1, 857 (2008).
[7] N. Nilius, M. Kulawik, H.-P. Rust, H.-J. Freund, Surf. Sci. 572, 347 (2004).
[8] H. J. W. Zandvliet, A. van Houselt, Annu. Rev. Anal. Chem. 2, 37 (2009).
[9] R. Wiesendanger, Rev. Mod. Phys. 81, 1495 (2009).
[10] W. Ho, J. Chem. Phys. 117, 11033 (2002).
[11] J.R. Jenkin, R.C.G. Leckey, J. Liesegang, JESRP 12, 1 (1977).
[12] H. Hertz, S. d. Berl, A. d. Wiss, "On an effect of ultraviolet light upon electric discharge" (1877).
[13] P. D. Innes, Proc. R. Soc. A 79, 442 (1907).
[14] C. Nordling, E. Sokolowski, K. Siegbahn, Physical Review 105, 1676 (1957).
[15] E. Sokolowski, C. Nordling, K. Siegbahn, Physical Review 110, 776 (1958).
[16] A. Fahlman, K. Hamrin, J. Hedman, R. Nordberg, C. Nordling, K. Siegbahn, Nature 210, 4 (1966).
[17] S. Hagstrom, C. Nordling, K. Siegbahn, Phys. Lett .9, 235 (1964).
[18] K. Siegbahn, Philosophical Transactions of the Royal Society of London Series A Mathematical and Physical Sciences 268, 33 (1970).
[19] D. Briggs, M.P. Seah, "Practical surface analysis", John Wiley & Sons, vol.1 (1990).
[20] S. Hüfner, "Photoelectron spectroscopy: principles and applications" Springer-Verlag, 2nd ed. (1996).
[21] H. Hertz, Ann. Phys. 17, 983 (1887).
[22] A. Einstein, Ann. Phys. 31, 132 (1905).

Chapter 4.
[1] C. T. Campbell, Surf. Sci. Rep.27, 1 (1997).
[2] M. Haruta, Catal. Today 36, 153 (1997).
[3] C. R. Henry, Surf. Sci. Rep. 31, 231 (1998).
[4] G. Ertl, H. Knoezinger, J. Weitkamp, Eds. Handbook of Heterogeneous Catalysis; VCH: Weinheim, Germany, (1997).
[5] J. C. J. Bart, R. P. A. Sneeden, Catal. Today 2, 1 (1987).
[6] M. S. Spencer, Topics Catal. 8, 259 (1999).
[7] J. G. Nunan, C. E. Bogdan, K. Klier, K. J. Smith, C. W. Young, R. G. Herman, J. Catal. 116, 195 (1989).
[8]G. B. Hoflund, W. S. Epling, D. M. Minahan, Catal. Lett. 45, 135 (1997).
[9] Y. Choi, K. Futagami, T. Fujitani, J. Nakamura, Appl. Catal. A 208, 163 (2001).
[10] H. Purnama, T. Ressler, R. E. Jentoft, H. Soerijanto, R. Schlögl, R. Schomäcker, Appl. Catal. A 259, 83 (2004).
[11] J. P. Breen, J. R. H. Ross, Catal. Today 51, 521 (1999).
[12] S. Liu, K. Takahashi, M. Ayabe Catal. Today 87, 247 (2003)
[13] F. Ammari, J. Lamotte, R. Touroude, J. Catal. 221, 32 (2004).
[14] H. Sakurai, M. Haruta, Catal. Today 29, 361 (1996).
[15] S. Sugawa, K. Sayama, K. Okabe, H. Arakawa, Energy Convers. Manage. 36, 665 (1995).
[16] L. Mo, X. Zheng, C.-T. Yeh, Chem. Commun. 12, 1426 (2004).
[17] W. G. Xie, F. Y. Xie, X. L. Yu, K. Xue, J. B. Xu, J. Chen, R. Zhang, Appl. Phys. Lett. 95, 262506 (2009).
[18] J. A. Dumont, M. C. Mugumaoderha, J. Ghijsen, S. Thiess, W. Drube, B. Walz, M. Tolkiehn, D. Novikov, F. M. F. de Groot, R. Sporken, J. Phys. Chem. C 115, 7411 (2011).
[19] M. P. Hyman, E. Martono, J. M. Vohs, J. Phys. Chem. C 114, 16892 (2010).
[20] E. Martono, M. P. Hyman, J. M. Vohs, Phys. Chem. Chem. Phys. 13, 9880 (2011).
[21] O. Dulub, L. A. Boatner, U. Diebold, Surf. Sci. 504, 271 (2002).
[22] K. Ozawa, K. Edamoto, Surf. Sci. 524, 78 (2003).
[23] K. Ozawa, T. Sato, M. Kato, K. Edamoto, Y. Aiura, J. Phys. Chem. B 109, 14619 (2005).
[24] J. H. Lai, S. H. Su, H.-H. Chen, J. C. A. Huang, C.-L. Wu, Phys. Rev. B 82, 155406 (2010).
[25] T. H. Lee, J. C. A. Huang, G. L. Pakhomov, T. F. Guo, T. C. Wen, Y. S. Huang, C. C. Tsou, C. T. Chung, Y. C. Lin, Y. J. Hsu, Adv. Funct. Mater. 18, 3036 (2008).
[26] C. Y. Li, T. C. Wen, T. H. Lee, T. F. Guo, J. C. A. Huang, Y. C. Lin, Y. J. Hsu, J. Mater. Chem. 19, 1643(2009).
[27] P. Schröer, P. Krüger, J. Pollmann, Phys. Rev. B 49, 17092 (1994).
[28] R. Kováčik, B. Meyer, D. Marx, Angew. Chem. Int. Ed. 46, 4894 (2007).
[29] T. M. Parker, N. G. Condon, R. Lindsay, F. M. Leibsle, G. Thornton, Surf. Sci. 415, L1046 (1998).
[30] O. Dulub, L. A. Boatner, U. Diebold, Surf. Sci. 519, 201 (2002).
[31] U. Diebold, L.V. Koplitz, O. Dulub, Appl. Surf. Sci. 237, 336 (2004).
[32] O. Dulub, U. Diebold, G. Kresse, Phys. Rev. Lett. 90, 016102 (2003).
[33] X. -L. Yin, A. Birkner, K. Hänel, T. Löber, U. Köhler, C. Wöll, Phys. Chem. Chem. Phys. 8, 1477 (2006).
[34] X. Shao, K. Fukui, H. Kondoh, M. Shionoya, Y. Iwasawa, J. Phys. Chem. C 113, 14356 (2009)
[35] W. C. Lin, C. C. Kuo, M. F. Luo, K. J. Song, M. T. Lin, Appl. Phys. Lett. 86, 043105 (2005).
[36] W. C. Lin, S. S.Wong, P. C. Huang, C. B. Wu, B. R. Xu, C. T. Chiang, H. Y. Yen, M. T. Lin, Appl. Phys. Lett. 89, 153111 (2006).
[37] R. Shantyr, Ch. Hagendorf, H. Neddermeyer, Surf. Sci. 566, 68 (2004).
[38] C. Giovanardi, L. Hammer, K. Heinz, Phys. Rev. B 74, 125429 (2006).
[39] L. Gragnaniello, S. Agnoli, G. Parteder, A. Barolo, F. Bondino, F. Allegretti, S. Surnev, G. Granozzi, F. P. Netzer, Surf. Sci. 604, 2002 (2010).
[40] P. Blumentrit, M. Yoshitake, S. Nemšák, T. Kim, T. Nagata, Appl. Surf. Sci. 258, 780 (2011).
[41] T. Kim, M. Yoshitake, S. Yagyu, S. Nemsak, T. Nagata, T. Chikyow, Surf. Interface Anal. 42, 1528 (2010).
[42] O. Dulub, M. Batzill, U. Diebold, Topics Catal. 36, 65 (2005).
[43] P. Lazcano, M. Batzill, U. Diebold, P. Häberle, Phys. Rev. B 77, 035435 (2008).
[44] K. Ozawa, T. Sato, e-J. Surf. Sci. Nanotech. 3, 299 (2005).
[45] R. B. Moyes, M. W. Roberts, J. Catal. 49, 216 (1977).
[46] M. E. Bridge, R. M. Lambert, Surf. Sci. 82, 413 (1979).
[47] B. J. Tan, K. J. Klabunde, P. M. A. Sherwood, J. Am. Chem. Soc. 113, 855 (1991).
[48] S. C. Petitto, E.M. Marsh, G. A. Carson, M. A. Langell, J. Mol. Catal. A: Chem. 281,49 (2008).
[49] H. A. E. Hagelin-Weaver, G. B. Hoflund, D. M. Minahan, G. N. Salaita, Appl. Surf. Sci. 235, 420 (2004).
[50] K. Ozawa, T. Sato, Y. Oba, K. Edamoto, J. Phys. Chem. C 111, 4256 (2007).
[51] R. Schlaf, B. A. Parkinson, P. A. Lee, K. W. Nebesny, N. R. Armstrong, J. Phys. Chem. B 103, 2984 (1999).
[52] S. Sindhu, M. Heiler, K.-M. Schindler, H. Neddermeyer, Surf. Sci. 541, 197 (2003).
[53] G. K. Wertheim, S. B. DiCenzo, D. N. E. Buchanan, Phys. Rev. B 33, 5384 (1986).
[54] H. Hövel, B. Grimm, M. Pollmann, B. Reihl, Phys. Rev. Lett. 81, 4608 (1998).
[55] A. Howard, D. N. S. Clark, C. E. J. Mitchell, R. G. Egdell, V. R. Dhanak, Surf. Sci. 518, 210 (2002).
[56] H. Moormann, D. Kohl, G. Heiland, Surf. Sci. 80, 261 (1979).
[57] K. Jacobi, G. Zwicker, A. Gutmann, Surf. Sci. 141, 109 (1984).
[58] J. Lahtinen, J. Vaari, K. Kauraala, Surf. Sci. 418, 502 (1998).
[59] L. J. Brillson, J. Vac. Sci. Technol. 16, 1137 (1979).
[60] U. Diebold, Surf. Sci. Rep. 48, 53 (2003).
[61] J. Yoshihara, J. M. Campbell, C. T. Campbell, Surf. Sci. 406, 235 (1998).
[62] D. A. Chen, M. C. Bartelt, R. Q. Hwang, K. F. McCarty, Surf. Sci. 450, 78 (2000).
[63] D. A. Chen, M. C. Bartelt, S. M. Seutter, K. F. McCarty, Surf. Sci. 464, L708 (2000).
[64] C. T. Campbell, D. E. Starr, J. Am. Chem. Soc. 124, 9212 (2002).
[65] A. W. Grant, J. T. Ranney, C. T. Campbell, T. Evans, G. Thornton, Catal. Lett. 65, 159 (2000).
[66] N. Sanchez, S. Gallego, M. C. Muñoz, Appl. Phys. Lett. 99, 153102 (2011).
[67] H. S. Roh, A. Platon, Y. Wang, D. L. King, Catal. Lett. 110, 1 (2006).
[68] H. S. Roh, Y. Wang, D. L. King, A. Platon, Y. H. Chin, Catal. Lett. 108, 15 (2006).
[69] M. Ni, D. Y. C. Leung, M. K. H. Leung, Int. J. Hydrogen Energy 32, 3238 (2007).
[70] D. K. Liguras, D. I. Kondarides, X. E. Verykios, Appl. Catal. B 43, 345 (2003).
[71] S. S. Y. Lin, D. H. Kim, S. Y. Ha, Catal. Lett. 122, 295 (2008).
[72] J. Llorca, N. Homs, J. Sales, P. Ramírez de la Piscina, J. Catal. 209, 306 (2002).
[73] J. Llorca, J. A. Dalmon, P. Ramírez de la Piscina, N. Homs, Appl. Catal. A, 243, 261 (2003).
[74] J. Llorca, N. Homs, P. Ramírez de la Piscina, J. Catal. 227, 556 (2004).
[75] J. Llorca, P. Ramírez de la Piscina, N. Homs, Chem. Mater. 16, 3573 (2004).

Chapter 5.
[1] M. Ni, D. Y. C. Leung, M. K. H. Leung, Int. J. Hydrogen Energy 32, 3238 (2007).
[2] D. K. Liguras, D. I. Kondarides, X. E. Verykios, Appl. Catal. B 43, 345 (2003).
[3] E. Martono, M. P. Hyman, J. M. Vohs, Phys. Chem. Chem. Phys., 13, 9880 (2011).
[4] J. Llorca, P. Ramírez de la Piscina, J. A. Dalmon, N. Homs, Chem. Mater. 16, 3573 (2004).
[5] M. Behrens, F. Studt, I. Kasatkin, S. Kühl, M. Hävecker, F. Abild-Pedersen, S. Zander, F. Girgsdies, P. Kurr, B.-L. Kniep, M. Tovar, R.W. Fischer, J. K. Nørskov, R. Schlögl, Science. 336, 893 (2012).
[6] M. S. Spencer, Topics Catal. 8, 259 (1999).
[7] F. Liao, Y. Huang, J. Ge, W. Zheng, K. Tedsree, P. Collier, X. Hong, S. C. Tsang, Angew. Chem., Int. Ed. Engl. 50, 2162 (2011).
[8] M. Behrens, J. Catal. 267, 24 (2009).
[9] O. Dulub, M. Batzill, U. Diebold, Topics Catal. 36, 65 (2005).
[10] E. D. Batyrev, N. R. Shiju, G. Rothenberg, J. Phys. Chem. C 116, 19335 (2012).
[11] A.Y. Khodakov, W. Chu, P. Fongarland, Chem. Rev. 107, 1692 (2007).
[12] J. I. Yang, J. H. Yang, H. J. Kim, H. Jung, D. H. Chun, H. T. Lee, Fuel 89, 237 (2010).
[13] Q. Fu, H. Saltsburg, M. Flytzani-Stephanopoulos, Science 301, 935 (2003).
[14] B. Qiao, A. Wang, X. Yang, L. F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, T. Zhang, Nature Chem. 3, 634 (2011).
[15] G. Kyriakou, M. B. Boucher, A. D. Jewell, E. A. Lewis, T. J. Lawton, A. E. Baber, H. L. Tierney, M. Flytzani-Stephanopoulos, E. C. H. Sykes, Science 335, 1209 (2012).
[16] M. Haruta, N. Yamada, T. Kobayashi, S. Iijima, J. Catal. 115, 301 (1989).
[17] M. Valden, X. Lai, D. W. Goodman, Science 281, 1647 (1998).
[18] J. A. Farmer, C. T. Campbell, Science 329, 933 (2010).
[19] S. C. Parker, C. T. Campbell, Phys. Rev. B 75, 035430 (2007).
[20] J. Llorca, N. Homs, J. Sales, P. R. de la Piscina, J. Catal. 209, 306 (2002).
[21] B. Banach, A. Machocki, P. Rybak, A. Denis, W. Grzegorczyk, W. Gac, Catal. Today
176, 28 (2011).
[22] H. S. Roh, Y. Wang, D. L. King, A. Platon, Y. H. Chin, Catal. Lett. 108, 15 (2006).
[23] J. P. Breen, R. Burch, H. M. Coleman, Appl. Catal. B 39, 65 (2002).
[24] J. Rasko, A. Hancz, A. Erdohelyi, Appl. Catal. A 269, 13 (2004).
[25] J. Llorca, J. A. Dalmon, P. Ramírez de la Piscina, N. Homs, Appl. Catal. A, 243, 261 (2003).
[26] H. Song, U. S. Ozkan, J. Catal. 261, 66 (2009).
[27] J. Llorca, P. Ramírez de la Piscina, J. A. Dalmon, J. Sales, N. Homs, Appl. Catal., B 43, 355 (2003).
[28] J. Llorca, J. A. Dalmon, P. Ramírez de la Piscina, N. Homs, Appl. Catal. A, 243, 261 (2003).
[29] S.H. Su, J.H. Lai, H.-H. Chen, T. H. Lee, Y.-J. Hsu, R. L. Wang, J. C. A. Haung, J. Phys. Chem. C 116, 9917(2012).
[30] J. H. Lai, S. H. Su, H.-H. Chen, J. C. A. Huang, C.-L. Wu, Phys. Rev. B 82, 155406 (2010).
[31] T. H. Lee, J. C. A. Huang, G. L. Pakhomov, T. F. Guo, T. C. Wen, Y. S. Huang, C. C. Tsou, C. T. Chung, Y. C. Lin, Y. J. Hsu, Adv. Funct. Mater. 18, 3036 (2008).
[32] R. B. Moyes, M. W. Roberts, J. Catal. 49, 216 (1977).
[33] M. E. Bridge, R. M. Lambert, Surf. Sci. 82, 413 (1979).
[34] B. J. Tan, K. J. Klabunde, P. M. A. Sherwood, J. Am. Chem. Soc. 113, 855 (1991).
[35] M. P. Hyman, E. Martono, J. M. Vohs, J. Phys. Chem. C 114, 16892 (2010).
[36] S. C. Petitto, E. M. Marsh, G. A. Carson, M. A. Langell, J. Mol. Catal. A: Chem. 281,49 (2008).
[37] H. A. E. Hagelin-Weaver, G. B. Hoflund, D. M. Minahan, G. N. Salaita, Appl. Surf. Sci. 235, 420 (2004).
[38] M. Baron, O. Bondarchuk, D. Stacchiola, S. Shaikhutdinov, H. J. Freund, J. Phys.
Chem. C 113, 6042 (2009).
[39] H. J. Freund, Angew. Chem., Int. Ed. 36, 452 (1997).
[40] A. Howard, D. N. S. Clark, C. E. J. Mitchell, R. G. Egdell, V. R. Dhanak, Surf. Sci. 518, 210 (2002).
[41] C. J. Weststrate, A. Resta, R. Westerstrom, E. Lundgren, A. Mikkelsen, J. N. Andersen, J. Phys. Chem. C 112, 6900 (2008).
[42] J. Zarraga-Colina, R. M. Nix, Surf. Sci. 600, 3058 (2006).
[43] Y. Zhou, J. M. Perket, J. Zhou, J. Phys. Chem. C 114, 11853 (2010).
[44] K. Ozawa, T. Sato, e-J. Surf. Sci. Nanotech. 3, 299 (2005).
[45] K. Ozawa, K. Edamoto, Surf. Sci. 547, 257 (2003).
[46] K. Jacobi, G. Zwicker, A. Gutmann, Surf. Sci. 141, 109 (1984).
[47] M. Hellström1, D. Spångberg1, Hermansson, K. ;Broqvist, P. Phys. Rev. B 86, 235302 (2012).
[48] Y.-T. Cheng, T.-R. Shan, B. Devine, D. Lee, T. Liang, B. B. Hinojosa, S. R. Phillpot, A. Asthagiri, S. B. Sinnott, Surf. Sci. 606, 1280 (2012).
[49] K. Ozawa, T. Sato, M. Kato, K. Edamoto, Y. Aiura, J. Phys. Chem. B 109, 14619 (2005).
[50] M. Kroll, T. Löber, V. Schott, C. Wöll, U. Köhler, Phys. Chem. Chem. Phys. 14, 1654 (2012).
[51] K. Ozawa, T. Sato, Y. Oba, K. Edamoto, J. Phys. Chem. C 111, 4256 (2007).
[52] O. Dulub, L. A. Boatner, U. Diebold, Surf. Sci., 504, 271 (2002).
[53] K. Ozawa, K. Edamoto, Surf. Sci. 524, 78 (2003).
[54] M. Haruta, CATTECH 6, 102 (2002).
[55] M. Haruta, Catal. Today 36, 153 (1997).
[56] M. Valden, S. Pak, X. Lai, D. W. Goodman, Catal. Lett. 56, 7 (1998).
[57] B. Yoon, H. Häkkinen, U. Landman, A. S. Wörz, J.-M. Antonietti, S. Abbet, K. Judai, U. Heiz, Science 307, 403 (2005).
[58] S. S. Y. Lin, D. H. Kim, S. Y. Ha, Catal. Lett. 122, 295 (2008).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-07-29起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-07-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw