進階搜尋


下載電子全文  
系統識別號 U0026-2107201214511400
論文名稱(中文) 高取樣率GPS定位精度分析
論文名稱(英文) Resolution analysis on high-rate GPS positioning accuracy
校院名稱 成功大學
系所名稱(中) 地球科學系碩博士班
系所名稱(英) Department of Earth Sciences
學年度 100
學期 2
出版年 101
研究生(中文) 謝光紀
研究生(英文) Kuang-Chi Hsieh
學號 L46991176
學位類別 碩士
語文別 中文
論文頁數 71頁
口試委員 指導教授-饒瑞鈞
口試委員-張午龍
口試委員-陳國華
口試委員-景國恩
中文關鍵字 精密單點定位  恆星日濾波  空間濾波  甲仙地震 
英文關鍵字 precise point positioning  sidereal filtering  spatial filtering  Jiashian earthquake 
學科別分類
中文摘要 本研究搜集並分析台灣GPS連續觀測站1Hz觀測資料,探討台灣高頻GPS (High-rate GPS) 連續觀測站應用於地震學研究之可行性。我們運用相對定位(relative positioning) 以及精密單點定位(precise point positioning) 兩種GPS定位技術進行計算及精度分析探討,再以2010年3月4日Mw 6.4甲仙地震為例,嘗試求取同震位移以及地震波形。為了濾除多路徑效應(multipath) 產生的誤差以及區域性的共模誤差(common mode noise),我們利用修改的恆星日濾波技術(modified sidereal filtering)以及空間濾波技術(spatial filtering)來改進時間序列精度。研究結果分作精度及地震時間段分析兩部份討論。就精度分析而言,恆星日濾波技術對於相對定位不論是水平方向或是高程向的精度皆有很明顯的改正,有些站甚至達到50%以上;而絕對定位的部份,水平向的精度提升雖不及相對定位,也還是有5%-30%不等的改進,且高程向的改正十分顯著。在空間濾波方面,相對定位的結果一樣得到了很好的修正,水平方向為5%-60%,高程向的部份則為17%-64%;絕對定位則沒有得到太大的修正。造成精度改進差異的原因推估為,恆星日濾波的部份,因為其針對的是誤差的時間重複性,所以兩種定位方法結果皆能得到改進,而改進的程度則與主要造成多路徑效應的原因─測站周遭的環境,有很密切的關係,並且由結果可知多路徑效應對於動態定位的影響,高程向較水平向更為顯著;空間濾波則針對的是座標誤差的空間性,相對定位中目標測站的結果亦包含了參考站的誤差,所以能得到很好的修正。對地震時間段分析而言,本研究以2010年甲仙地震為例。將高頻GPS結果與靜態的每日解作比較,靠近旗山斷層的測站GS51之高頻GPS東西向同震量兩種定位皆小於每日解推估結果,各約為88 %及70 %,可知靜態每日解所推估的同震位移量也包含震後變形所產生的位移量。我們進一步將GPS測站以及相鄰的地震站作比較,發現兩者波形有很好的一致性,得知高頻GPS定位結果可與地震站之訊號相輔相成地成為研究地震學的良好資料。
英文摘要 My research collects and analyzes 1-Hz GPS data from continuous GPS sites in Taiwan to discuss its feasibility in recording seismic displacements. I use both the relative positioning and the precise point positioning techniques (PPP). Furthermore, I try to obtain co-seismic displacement and seismic wave from Mw 6.4 Jiashian earthquake that occurred on 4 March 2010. For eliminating errors caused by multipath effects and common mode noises, I use modified sidereal filtering and spatial filtering techniques. My results discuss two parts, one is the positioning precision and the other is its temporal behavior during the earthquake period. For positioning precision, I could see good improvement in both horizontal and vertical components after applying modified sidereal filtering in relative positioning. Some stations even achieve a 50 % improvement. In PPP, although the improvement in precision is not as well as the relative positioning, there is still a 5 to 30 % enhancement. Because the modified sidereal filtering focus on time series repeatability in the time domain, both positioning techniques have good improvement depending on the environment around the GPS stations, which is thought to be mainly caused by multipath effects. From this result, I could also infer that multipath effects have higher influence on the vertical component than in the horizontal for the kinematic positioning. After applying modified sidereal filtering, I apply spatial filtering in the processing. In relative positioning, it still has good improvement, a 5 to 60 % in horizontal and a 17 to 64 % in vertical; but does not work well in PPP. The reason which makes this difference is that spatial filtering focuses on spatial-related errors. In relative positioning, the error would propagate from the reference station to the rover station, so the spatial filter could show good result. For the high-rate GPS behavior during the earthquake period, I take 2010 Jiashian earthquake for example. I use the high-rate GPS positioning result of station GS51 which is near Chishan fault to compare with its daily solution. Its co-seismic displacement shows smaller than the result from daily solution – 88% in relative positioning and 70% in PPP. So, I could infer that the co-seismic displacement obtained from daily solution also include the displacement caused by postseismic deformation. I also compare the waveform between strong-motion seismometer and GPS site nearby. After transforming the acceleration to the displacement record, it shows well comparison. With seismometer, high-rate GPS could also be a good source for studying seismology.
論文目次 摘要...............i
Abstract...............iii
誌謝...............v
目錄...............vi
圖目錄...............ix
表目錄...............xii

第 1 章 緒論...............1
1.1 研究動機與目的...............1
1.2 前人研究...............2
1.3 研究內容...............9
第 2 章 GPS原理概述...............10
2.1 GPS基礎觀測量...............10
2.1.1 虛擬距離觀測量...............10
2.1.2 載波相位觀測量...............12
2.1.3 載波相位觀測量的線性組合...............14
2.2 GPS定位方法...............16
2.2.1 單點定位...............16
2.2.2 相對定位...............18
2.2.3 精密單點定位...............22
2.3 GPS定位誤差來源...............22
2.3.1 衛星時鐘差...............23
2.3.2 接收器時鐘差...............23
2.3.3 天線相位中心差...............23
2.3.4 衛星軌道誤差...............23
2.3.5 電離層延遲誤差...............24
2.3.6 對流層延遲誤差...............24
2.3.7 多路徑效應...............25
2.3.8 週波脫落...............25
第 3 章 研究方法...............26
3.1 研究流程...............26
3.2 資料來源...............27
3.3 GPS解算軟體簡介...............28
3.3.1 TRACK簡介...............28
3.3.2 GpsTools簡介...............31
3.4 修改的恆星日濾波(modified sidereal filtering)...............32
3.5 空間濾波(spatial filtering)...............36
第 4 章 結果與討論...............38
4.1 相對定位參考站的選定...............38
4.2 定位精度分析...............41
4.3 地震事件應用...............48
4.3.1 同震量估計比較...............48
4.3.2 地震波波形比較...............53
第 5 章 結論...............56
第 6 章 參考文獻...............57
附錄A...............62
附錄B...............64
自述...............71
參考文獻 Agnew, D. C., and K. M. Larson (2007), Finding the repeat times of the GPS constellation, GPS Solutions, 11(1), 71-76, doi:10.1007/s10291-006-0038-4.
Beutler, G., J. Kouba, and T. Springer (1995), Combining the orbits of the IGS analysis centers, Bulletin Gtodtsique, 69(4), 200-222, doi: 10.1007/BF00806733.
Bock, H., R. Dach, A. Jäggi, and G. Beutler (2009), High-rate GPS clock corrections from CODE: support of 1 Hz applications, Journal of Geodesy, 83(11), 1083-1094, doi: 10.1007/s00190-009-0326-1.
Bock, Y., R. M. Nikolaidis, P. J. de Jonge, and M. Bevis (2000), Instantaneous geodetic positioning at medium distances with the global positioning system, Journal of Geophysical Research, 105(B12), 28223-28253, doi:10.1029/2000JB900268.
Boore, D. M., C. D. Stephens, and W. B. Joyner (2002), Comments on baseline correction of digital strong-motion data Examples from the 1999 Hector, Mine, California earthquake, Bulletin of the Seismological Society of America, 92(4), 1543-1560, doi: 10.1785/0120000926.
Ching, K.-E., K. M. Johnson, R.-J. Rau, R. Y. Chuang, L.-C. Kuo, and P.-L. Leu (2011), Inferred fault geometry and slip distribution of the 2010 Jiashian, Taiwan, earthquake is consistent with a thick-skinned deformation model, Earth and Planetary Science Letters, 301(1-2), 78-86, doi:10.1016/j.epsl.2010.10.021.
Choi, K., A. Bilich, K. M. Larson, and P. Axelrad (2004), Modified sidereal filtering: Implications for high-rate GPS positioning, Geophysical Research Letters, 31(22), L22608, doi:10.1029/2004GL021621.
Davis, J. P., and R. Smalley (2009), Love wave dispersion in central North America determined using absolute displacement seismograms from high-rate GPS, Journal of Geophysical Research, 114, B11303, doi:10.1029/2009JB006288.
Elósegui, P., J. L. Davis, D. Oberlander, R. Baena, and G. Ekström (2006), Accuracy of high-rate GPS for seismology, Geophysical Research Letters, 33, L11308, doi:10.1029/2006GL026065.
Ge, L., S. Han, C. Rizos, Y. Ishikawa, M. Hoshiba, Y. Yoshida, M. Izawa, N. Hashimoto, and S. Himori (2000), GPS seismometers with up to 20 Hz sampling rate, Earth Planet Space, 52, 881-884.
Genrich, J. F., and Y. Bock (1992), Rapid resolution of crustal motion at short ranges with the Global Positioning System, Journal of Geophysical Research, 97(B3), 3261-3269, doi:10.1029/91JB02997.
Herring, T.A., R. W. Kings, S. C. McClusky (2010), Documentation of the GAMIT GPS analysis software version 10.4, Massachusetts Institute of Technology, Cambridge.
Hsu, Y. J., S. B. Yu, L. C. Kuo, Y. C. Tsai, and H. Y. Chen (2011), Coseismic deformation of the 2010 Jiashian, Taiwan earthquake and implications for fault activities in southwestern Taiwan, Tectonophysics, 502(3-4), 328-335, doi:10.1016/j.tecto2011.02.005.
Ji, C., K. M. Larson, Y. Tan, K. W. Hudnut, and K. Choi (2004), Slip history of the 2003 San Simeon earthquake constrained by combining 1-Hz GPS, strong motion, and teleseismic data, Geophysical Research Letters, 31, L17608, doi:10.1029/2004GL020448.
King, M. A. (2009), The GPS contribution to the error budget of surface elevations derived from airborne LIDAR, IEEE Transactions on Geoscience and Remote Sensing, 47(3), 874-883, doi: 10.1109/TGRS.2008.2005730.
Langbein, J., and Y. Bock (2004), High-rate real-time GPS network at Parkfield: Utility for detecting fault slip and seismic displacements, Geophysical Research Letters, 31(15), L15S20, doi:10.1029/2003GL019408.
Larson, K. M. (2009), GPS seismology, Journal of Geodesy, 83(3-4), 227-233, doi: 10.1007/s00190-008-0233-x.
Larson, K. M., P. Bodin, and J. Gomberg (2003), Using 1-Hz GPS data to measure deformations caused by the Denali fault earthquake, Science, 300(5624), 1421-1424, doi: 10.1126/science.1084531.
Miyazaki, S. i., K. M. Larson, K. Choi, K. Hikima, K. Koketsu, P. Bodin, J. Haase, G. Emore, and A. Yamagiwa (2004), Modeling the rupture process of the 2003 September 25 Tokachi-Oki (Hokkaido) earthquake using 1-Hz GPS data, Geophysical Research Letters, 31, L21603, doi:10.1029/2004GL021457.
Nikolaidis, R. M. (2002), Observation of geodetic and seismic deformation with the Global Positioning System, Ph.D. thesis, University of California, San Diego.
Nikolaidis, R. M., Y. Bock, P. J. de Jonge, P. Shearer, D. C. Agnew, and M. Van Domselaar (2001), Seismic wave observations with the Global Positioning System, Journal of Geophysical Research, 106(B10), 21897-21916, doi:10.1029/2001JB000329.
Seeber, G., F. Menge , C. Völksen, G. Wübbena, M. Schmitz (1998), Precise GPS positioning improvements by reducing antenna and site depentdent effects, Springer, Berlin Heidelberg New York, 118,237-244.
Segall, P., and J. L. Davis (1997), GPS applications for geodynamics and earthquake studies, Annual Review of Earth and Plantary Science, 25, 301-336, doi: 10.1146/annurev.earth.25.1.301.
Takasu, T. (2008), Documentation of the GPS precise analysis software GpsTools (GT): ver.0.6.4 Release Notes, Tokyo University of Marine Science and Technology.
Takasu, T., and S. Kasai (2005), Evaluation of GPS precise point positioning (PPP) accuracy, IEIC Technical Report, 105(208), 40-45.
Wang, G. Q., D. M. Boore, G. Tang, and X. Zhou (2007), Comparisons of ground motions from colocated and closely spaced one-sample-per-second Global Positioning System and accelerograph recordings of the 2003 M 6.5 San Simeon, California, earthquake in the Parkfield region, Bulletin of the Seismological Society of America, 97(1B), 76-90, doi: 10.1785/0120060053.
Wdowinski, S., Y. Bock, J. Zhang, P. Fang, and J. Genrich (1997), Southern California permanent GPS geodetic array spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake, Journal of Geophysical Research, 102(B8), 18057-18070.
Wübbena, G. (1988), GPS carrier phases and clock modeling, GPS-Techniques Applied to Geodesy and Surveying, 381-392, doi:10.1007/BFb0011350.
Zumberge, J. F., M. B. Heftin, D. C. Jefferson, M. M. Watkins, and F. H. Webb (1997), Precise point positioning for the efficient and robust analysis of GPS data from large networks, Journal of Geophysical Research, 102(B3), 5005-5017.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-07-27起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-07-27起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw