進階搜尋


下載電子全文  
系統識別號 U0026-2107201112481800
論文名稱(中文) 形狀記憶合金致動器的定位與追蹤控制
論文名稱(英文) Positioning and Tracking Control of SMA Based Actuator
校院名稱 成功大學
系所名稱(中) 機械工程學系碩博士班
系所名稱(英) Department of Mechanical Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 梁開閎
研究生(英文) Kai-Hung Liang
學號 n16981834
學位類別 碩士
語文別 英文
論文頁數 83頁
口試委員 指導教授-田思齊
口試委員-朱銘祥
口試委員-張仁宗
中文關鍵字 形狀記憶合金  前饋控制  適應控制  磁滯效應補償 
英文關鍵字 Shape Memory Alloy  feedforward control  adaptive control  hysteresis compensation 
學科別分類
中文摘要 本論文的主要研究目的在於控制形狀記憶合金致動器,以達到精
密的定位與追蹤。由於存在形狀記憶合金之中的磁滯效應使得定位
時出現了誤差,因此本文使用基於逆Preisach模型的控制來補償遲滯
效應。完成磁滯效應的補償後,本文使用最佳化前饋控制來補償高
頻追蹤時,相位落後所造成的追蹤誤差。此外,建模的誤差與外界
的干擾使得許多不確定性無法單純使用上述前饋類型的控制方法來補
償, 因此本文以適應控制做為反饋控制的方法來處理諸多的不確定
性。最後,實驗結果顯示,經由基於逆Preisach模型的控制、最佳化
前饋控制與適應控制確實能夠改善定位與追蹤的效能。
英文摘要 The purpose of this thesis is to control the Shape Memory Alloy based actuator to achieve precision positioning and tracking. Therefore, three control schemes were applied to Shape Memory Alloy to compensate for errors caused by hysteresis, limited bandwidth and modelling uncertainties. First, inverse-Preisach-model-based control was used to compensate for the hysteresis. Second, optimal-inverse-feedforward control was used to compensate for the phase lag. Third, adaptive control was used to deal with modelling uncertainties including modelling errors and changes of environment. Finally, it could be shown in experiment results that control schemes proposed in this thesis can indeed improve the positioning and tracking performances.
論文目次 Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation and Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Review of SMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Organization of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Chapter 2: Basics of Shape Memory Alloy . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Crystal Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Shape Memory Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Superelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Applications of SMA as an actuator . . . . . . . . . . . . . . . . . . . . . . . 11
Chapter 3: Control scheme of Shape Memory Alloy . . . . . . . . . . . . . . . . . 12
3.1 Nonlinear compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.1 Preisach model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 Inversion of the Preisach model . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Phase Delay Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Modelling uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Chapter 4: Experiment setup and procedure . . . . . . . . . . . . . . . . . . . . . 26
4.1 Experiment set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Experiment procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.1 Modelling and compensation for hysteresis . . . . . . . . . . . . . . . . 33
4.2.2 Modelling of system dynamics . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.3 Simulation results of positioning and tracking . . . . . . . . . . . . . . 43
Chapter 5: Experimental result and discussion . . . . . . . . . . . . . . . . . . . . 55
5.1 Positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.1.1 Inverse Preisach Model Based Control . . . . . . . . . . . . . . . . . . 55
5.1.2 Adaptive Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.1.3 Inverse-Preisach-Model-Based Control plus Adaptive Control . . . . . 59
5.2 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.1 Inverse-Preisach-Model-Based Control . . . . . . . . . . . . . . . . . . 62
5.2.2 Optimal-Inverse-Feedforward Control . . . . . . . . . . . . . . . . . . 63
5.2.3 Adaptive Control . . . . . . . . . . . . . . 65
5.2.4 Adaptive Control Plus Inverse-Preisach-model-based control . . . . . . 67
5.2.5 Adaptive Control Plus Inverse-Preisach-model-based control Plus Optimal-Inverse-Feedforward Control . . . 68
Chapter 6: Conclusion and future work . . . . . . . . . 72
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Appendix A: Calibration of linear variable differential transformers (LVDT) . . . . . 76
Appendix B: Force produced by the spring inside the LVDT .78
Appendix C: Calibration of load cell . . . . . . . . .. . 79
Appendix D: Converting the force applied on SMA to corresponding elongation . . . 80
Appendix E: Specifications . . . . . . . . . . . . . . . . . . . . . 82
參考文獻 [1] Ean H. Schiller. Heat engine driven by shape memory alloys: Prototyping and design. Master’s thesis, Virginia Polytechnic Institute and State University, 2002.
[2] Timo Jamsa V.K. Lindroos Simo Pekka Hannula, Outi Soderberg. Shape memory alloys for biomedical applications. Advances in Science and Technology, 49:109–118, 2006.
[3] Hou-Jun Lee Steve Arnold Gangbing Song, Ning Ma. Design and control of a proofof-concept variable area exhaust nozzle using shape-memory alloy actuators. Smart Materials and Structures, 16(4):1342–1347, 2007.
[4] H.-N. Li G. Song, N. Ma. Applications of shape memory alloys in civil structures. Engineering Structures, 28:1266–1274, 2006.
[5] H.A. Rusk. Rehabilitation Medicine. St. Louis: CV Mosby, 1977.
[6] D.W. Lamb. State of the art in upper-limb prosthetics. Journal of Hand Therapy, 6:1–8, 1993.
[7] Constantinos Mavroidis Kathryn J. De Laurentis. Mechanical design of a shape memory alloy actuated prosthetic hand. Technology and Health Care, 10(2):91–106, 2002.
[8] F. Salsedo M. Bergamasco and P. Dario. Shape memory alloy micromotors for directdrive actuation of dexterous artificial hands. Sensors and Actuators, 17:115–119, 1989.
[9] K. Kuribayashi. A new actuator of a joint mechanism using tini alloy wire. International Journal of Robotics Research, 4:47–58, 1986.
[10] N. B Morgan. Medical shape memory alloy applications-the market and its products. Materials Science and Engineering A, 378:16–23, 2004.
[11] L. G. Khandro G. V. Kurdjumov. First reports of the thermoelastic behaviour of the martensitic phase of au-cd alloys. Doklady Akademii Nauk SSSR, 66:211V213, 1949.
[12] Mihalcz Istvan. Fundamental characteristics and design method for nickel-titanium shape memory alloy. Mechanical Engineering, 45(1):75–86, 2001.
[13] M. S. Huang L. C. Brinson. Simplifications and comparisons of shape memory alloy constitutive models. Journal of Intelligent Material Systems and Structures, 7:108–114, 1996.
[14] Victor Birman. Review of mechanics of shape memory alloy structures. Appl. Mech. Rev., 50:629–645, 1997.
[15] Hai Shan Ding Wen Bo Zhang Hui Bin Xu Cheng Bao Jiang Fan Li, Jian Qin Mao. A new method to identify the preisach distribution function of hysteresis. Materials Science Forum, 475-479:2107–2110, 2005.
[16] P.D. Spanosb C.V. Massalas A. Ktenaa, D.I. Fotiadisa. A preisach model identification procedure and simulation of hysteresis in ferromagnets and shape-memory alloys. Physica B, 306:84–90, 2001.
[17] John T. Wenz Declan Hughesy. Preisach modeling of piezoceramic and shape memory alloy hysteresis. Smart Materials and Structures, 6:287–300, 1997.
[18] Iwai Z. Indou A. Kumon M., Mizumoto I. Shape memory alloy actuator with simple adaptive control. International Journal of Innovative Computing, Information and Control, 4(12):429–429, 2007.
[19] Brij N Agrawal Gangbing Song, Brian Kelly. Active position control of a shape memory alloy wire actuated composite beam. Smart Materials and Structures, 9:711–716, 2000.
[20] Jin-Ho Roh Jeffrey R. Hill, K. W. Wang. Position control of shape memory alloy actuators with load and frequency dependent hysteresis characteristics. SPIE, 7286:728609 1–9, 2009.
[21] Nguyen Bao Kha Kyoung Kwan Ahn. Modeling and control of shape memory alloy actuators using preisach model, genetic algorithm and fuzzy logic. Mechatronics, 18:141–152, 2008.
[22] A. Garcia-Arribas E. Asua, V. Etxebarria. Neural network-based micropositioning control of smart shape memory alloy actuators. Engineering Applications of Arti cial Intelligence, 21:796–804, 2008.
[23] Xiaobo Tan Iyer R.V. Control of hysteretic systems through inverse compensation. Control Systems, IEEE, 29:83–99, 2009.
[24] P. S. Krishnaprasad Xiaobo Tan, Ram Venkataraman. Control of hysteresis: theory and experimental results. SPIE, 4326:101–112, 2001.
[25] G. M. Clayton, S. Tien, A. J. Fleming, S. O. R Moheimani, and S. Devasia. Inversefeedforward of charge-controlled piezopositioners. The 4th IFAC Symposium on Mecha- tronic Systems, 18:273–281, 2008.
[26] Karl J. Astrom and Bjorn Wittenmark. Adaptive Control. Pearson Education Taiwan Ltd, 2006.
[27] Eleonora Zanaboni. One way and two way shape memory effect: Thermo-mechanical characterization of ni-ti wires. Master’s thesis, University of Pavia, 2008.
[28] John A. Shaw Benjamin Reedlunn. Shape memory alloy cables. SPIE, 6929:69291G 1–11, 2008.
[29] A. Garcia E. Asua, V. Etxebarria and J. Feuchtwange. Micropositioning control of smart shape-memory alloy-based actuators. Assembly Automation, 29:272–278, 2009.
[30] Reginald DesRoches M.ASCE Roberto T. Leon M.ASCE W. Gregory Hess Robert Krumme Jack R. Hayes Justin Oce, M.ASCE and Steve Sweeney. Steel beam-column connections using shape memory alloys. Journal of Structural Engineering, 130:732– 740, 2004.
[31] Suat KADIOGLU Burcu DONMEZ, Bulent OZKAN. Precise position control using shape memory alloy wires. Turk J Elec Eng and Comp Sci, 18(5):899–912, 2010.
[32] Lucas Delaey Jordi Ortin. Hysteresis in shape-memory alloys. International Journal of Non-Linear Mechanics, 37:1275–1281, 2002.
[33] M.ASCE; Jason McCormick; Reginald DesRoches and Michael Delemont. Cyclic properties of superelastic shape memory alloy wires and bars. Journal of Structural Engineering, 130(1):38–46, 2004.
[34] Kalervo Nevala Pekka Isto Jari Ahola, Tomi Makkonen. Comparison of position control algorithms of embedded shape memory alloy actuators. IEEE International Conference on Mechatronics, pages 1–6, 2009.
[35] D C Lagoudas O K Rediniotis L J Garner, L N Wilson. Development of a shape memory alloy actuated biomimetic vehicle. Smart Materials and Structures, 9:673–683, 2000.
[36] Rob R. Brinkerhoff and S. Devasia. Output tracking for actuator deficient/redundant systems:multiple piezoactuator example. Journal of Guidance, Control, and Dynamics, 23, no. 2:370–373, 2000.
[37] Po-Jen Ko. Design, manufacturing and control of piezo-stage. Master’s thesis, National Cheng Kung University, 2010.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-07-27起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2013-07-27起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw