進階搜尋


下載電子全文  
系統識別號 U0026-2107201017293700
論文名稱(中文) 遞迴式模糊類神經網路於新型線性超音波馬達位置控制之研究
論文名稱(英文) Study of Position Control of a Novel Linear Ultrasonic Motor Using Recurrent Fuzzy Neural Network
校院名稱 成功大學
系所名稱(中) 工程科學系碩博士班
系所名稱(英) Department of Engineering Science
學年度 98
學期 2
出版年 99
研究生(中文) 陳鵬倫
研究生(英文) Pon-Loon Chen
學號 n9697105
學位類別 碩士
語文別 英文
論文頁數 70頁
口試委員 指導教授-陳添智
口試委員-謝聰烈
口試委員-任才俊
口試委員-林清一
中文關鍵字 超音波馬達  電壓控制頻率電路  遞迴式類神經網路控制器 
英文關鍵字 Ultrasonic motor  voltage-controlled oscillator  Recurrent Fuzzy Neural Network Controller 
學科別分類
中文摘要 駐波型線性超音波馬達有體積小、重量輕、無噪音、不產生電磁波…等等的優點。直接驅動形式的駐波型線性超音波馬達在工業界、汽車工業、機器人上吸引了高度的關注,且已廣泛應用在機器人、照相機自動對焦、精密定位控制之相關商品之上。
傳統線性超音波馬達的行進速度和移動位置,經由驅動器輸入之兩相弦波的振幅、相位差、頻率調整。但是驅動器易受品質因素影響,造成兩相振幅的不平衡,因此,對於傳統線性超音波馬達,好的動態響應很難去達到。而新式之駐波型線性超音波馬達只需提供單相的弦波電壓,所以在實際的應用上,沒有兩相弦波電壓不平衡的缺點,並擁有優異的性能。
新式駐波型超音波馬達驅動電路,結合了壓控震盪電路與壓控增益放大電路控制馬達行進速度與位置,且擁有高性能和優良的效率,驅動電路以五級電路模組結合,依序為線性除法電路、電壓控制頻率電路(VCO)、電壓控制增益放大器電路、功率放大器和變壓器。然而,新式駐波型超音波馬達具有非線性之特性,在未知動態方程式下,使用遞迴式類神經網路控制器,系統將可具有精確且快速的速度響應控制,以達到即時控制之目的及良好的性能。
本論文中的實驗硬體架構,利用高精準度與不易受雜訊影響的數位訊號處理器和分離式磁性尺去實現。根據實驗結果,可以看出本論文所提出之控制器可獲得良好的控制性能及精準的位置響應,並驗證了本控制器在駐波型線性超音波馬達應用上,有著相當良好的性能與高實用性。
英文摘要 The standing-wave linear ultrasonic motor (LUSM) has the advantages that are small size, no noise and without electromagnetic wave effect. The standing-wave LUSM attracts special interest as direct drive type actuator in industry, robotics and automotive application. Furthermore, the standing-wave LUSM is also applied in some places which need to high precision.
The speed and position of the conventional LUSM can be manipulated by controlling the frequency, the difference of phases and the voltage amplitude of the sinusoidal voltage waveforms. But the driver is easily affected by quality factor such that the two-phase voltages would be imbalance. Therefore, a good dynamic performance of the conventional LUSM is difficult to be obtained due to the unbalanced two-phase voltages. Because the novel standing-wave LUSM could be supplied by a single phase sinusoidal wave, there is an outstanding performance in practical application without the demerit of the unbalanced two-phase voltages.
The drive circuit of the standing-wave LUSM combines voltage-controlled oscillator circuit and voltage-controlled amplifier circuit. The circuit is applied to control the speed and position of LUSM with good performance and high efficiency. Five stages, linear divider circuit, voltage-controlled oscillator circuit, voltage-controlled amplifier circuit, power amplifier and transformer, compose the drive circuit. Since the dynamic characteristics of the LUSM are nonlinear and the precise dynamic model is difficult to be obtained, a recurrent fuzzy neural networks (RFNN) position controller with precision and robustness is proposed.
In this thesis, the hardware of the experiment is implemented with a low-cost digital signal processor based microcontroller and the separate-type magnetic length measuring system. The experimental results of this thesis show the superior position control performance in the LUSM. Furthermore, the results demonstrate the effectiveness of the proposed controller.
論文目次 摘要 I
Abstract II
Acknowledgements III
Contents IV
List of Tables VII
List of Figures VIII
Symbols XI
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Outline of this Thesis 4
Chapter 2 Standing-Wave Linear Ultrasonic Motor 6
2.1 Introduction of Piezoelectric Effect 6
2.2 Background of the ultrasonic motor (USM)8
2.3 Principle of Traveling-Wave Ultrasonic Motor 9
2.4 Introduction the Standing-Wave Linear Ultrasonic Motor11
2.4.1 Introduction of the Standing-Wave Piezoelectric Actuator 13
2.4.2 The principle of the Standing-Wave Piezoelectric Vibrator 14
2.5 Operating Characteristic of the Standing-Wave Linear Ultrasonic Motor 16
Chapter 3 Recurrent Fuzzy Neural Network(RFNN) controller 18
3.1 The Control Scheme 18
3.2 The Principle of Recurrent Fuzzy Neural Network Controller 20
3.3 The Recurrent Fuzzy Neural Network Controller Design 23
3.4 Stability Derivation 26
3.5 Computer Simulation 29
3.5.1 Simulation of Recurrent Fuzzy Neural Networks Controller 29
3.5.2 Simulation of PI controller 30
3.5.3 Simulation Results 31
A. A square position command 31
B. A sinusoidal position command 32
Chapter 4 Experiment Implementation 37
4.1 Digital Signal Processor 38
4.2 Drive Circuit Design 41
4.2.1 Linear Analog Divider Circuit 42
4.2.2 Voltage-Controlled Oscillator 43
4.2.3 Voltage-Control Amplifier (VCA) 44
4.2.4 Power Amplifiers Circuit and Transformer 46
4.3 Magnetic length measuring system 48
4.4 Experimental Results 50
4.4.1 Experiments with a periodic square position command 51
A. A Square position command from -3 to 3 cm 51
B. A Square position command from 0 to 6 cm 51
4.4.2 Experiment with a sinusoidal position command 52
A. A sinusoidal position command from -17.5 to 17.5 cm 52
B. A sinusoidal position command from -17.5 to 17.5 cm 52
4.4.3 Experimental Results for a Speed Command of 10 cm/s with 100g Load 52
Chapter 5 Conclusions and Suggestion 64
5.1 Conclusions 64
5.2 Suggestions 65
Reference 66
Vita 70
參考文獻 [1]K. Uchino, Piezoelectric Actuators and Ultrasonic Motors, Kluwer Academic Publishers, 1997.
[2]A. Basak and F. J. Anayi, “A DC Linear Motor with a Square Armature,” IEEE Trans. On. Energy Conversion, Vol. 10, No. 3, pp. 462-469, September 1995.
[3]Y. B. Bang and K. M. Lee, “Linear Motor for Ejector Mechanism,” IEEE Electric Machines and Drives Conference, Vol. 3, No. 1, pp. 1702-1708, June 2003.
[4]E. Bassi, F. Benzi and F. Moro, “Force Disturbance Compensation for an A.C. Brushless Linear Motor,” IEEE International Symposium on Industrial Electronics, Vol. 3, pp. 1350-1354, July 1999.
[5]C. K. Lim, S. He, I. M. Chen and S. H. Yeo, “A Piezo-On Slider Type Linear Ultrasonic Motor for the Application of Positioning Stages,” IEEE Proc. International Conference on Advanced Intelligent Mechatronics, pp. 103-108, September 1999.
[6]M. Kurosawa and S. Ueha, “High Speed Ultrasonic Linear Motor with High Transmission Efficiency,” Ultrasonics, Vol. 27, pp. 39-44, 1989.
[7]S. Wolfgang, “Ultrasonic Traveling Wave Linear Motor with Improved Efficiency,” SPIE Proc. Smart Structure and Materia, Vol. 2717, pp. 554-564, 1996.
[8]M. Kurosawa, and K. Nishita, “Hybrid Transducer Type Ultrasonic Linear Motor Using Flexural Vibrator,” J. Acoust. Soc. Am., Vol. 77, pp. 1431-1435, 1985.
[9]M. Kurosawa, K. Nishita and S. Ueha, “Hybrid Transducer-Type Motor with Longitudinal Vibrator,” Japanese Journal of Applied Physics, Vol 28, pp. 158-160, 1989.
[10]M. Kurosawa and K. Nishita, “Hybrid Transducer Type Ultrasonic Linear Motor Using Flexural Vibrator,” Japanese Journal of Applied Physics, Vol. 30, pp. 209-211, 1991.
[11]T. Hemse1 and J. Wallaschek, “Ultrasonic Motors for Linear Position Task in Automobile,” 30th International Symposium on Automotive Technology & Automation, pp. 631-637, 1997.
[12]S. Shi, W. Chen and J. Liu, “A High Speed Ultrasonic Linear Motor Using Longitudinal and Bending Multimode Bolt-Clamped Langevin Type Transducer,” IEEE International Conference on Mechatronics and Automation, pp. 612-617, June 25-28, 2006.
[13]T. Takano and Y. Tomikawa, “Linearly Moving Ultrasonic Motor Using a Multi-Mode Vibrator,” Japanese Journal of Applied Physics, Vol. 28, pp. 164-166, 1989.
[14]Y. Tomikawa, T. Takano and H. Umeda, “Thin Rotary and Linear Ultrasonic Motors Using a Double-Mode Piezoelectric Vibrator of the First Longitudinal and Second Bending Modes,” Japanese Journal Applied Physics, Vol. 3l, pp. 3073-3076, 1992.
[15]F. J. Lin, R. J. Wai and K. K. Shyu, “Recurrent Fuzzy Neural Network Control for Piezoelectric Ceramic Linear Ultrasonic Motor Drive,” IEEE Trans. On Ultrasonics, Ferroelectrics and Frequency Control, Vol. 48, No. 4, pp. 900-913, July 2001.
[16]F. J. Lin, R. Y. Duan , R. J. Wai and C. M. Hong, “LLCC Resonant Inverter for Piezoelectric Ultrasonic Motor Drive,” IEE Proc. Electric Power Applications, Vol. 144, No. 5, pp. 479-487, September 1999.
[17]T. Izumi, H. Yasutsune, Y. J. Kim, and M. Nakaoka, “New inverter-fed power ultrasonic motor for speed tracking servo application and its feasible evaluations,” IEEE Trans. on Power Electronics. Drive Systems, Vol. 2, No.2, pp. 766-773, 1995.
[18]G. Bal and E. Bekiroglu, “Servo speed control of traveling-wave ultrasonic motor using digital signal processor,” Sensor and Actuators A 109, pp. 212-219, 2004.
[19]G. Bal and E. Bekiroglu, “A highly effective load adaptive servo drive system for speed control of traveling-wave ultrasonic motor,” IEEE Trans. on Power Electronics, Vol. 20, No. 5, pp. 1143-1149, September 2005.
[20]A. Alessandri, C. Cervellera, and M. Sanguineti, “Design of asymptotic estimators: an approach based on neural networks and nonlinear programming,” IEEE Trans. on Neural Networks, Vol. 18, No. 1, pp. 86-96, January 2007.
[21]M. Liu, “Delayed standard neural network models for control systems,” IEEE Trans. on Neural Networks, Vol. 18, No. 5, pp. 1376-1391, September 2007.
[22]V. M. Becerra, F. R. Garces, S. J. Nasuto, and W. Holderbaum, “An efficient parameterization of dynamic neural networks for nonlinear system identification,” IEEE Trans. on Neural Networks, Vol. 16, No. 4, pp. 983-988, July 2005.
[23]C. M. Lin and C. F. Hsu, “Recurrent neural network based adaptive-backstepping control for induction servomotors,” IEEE Trans. on Industrial Electronics, Vol. 52, No. 6, pp. 1677-1684, December 2005.
[24]C. C. Ku and K. Y. Lee, “Diagonal recurrent neural networks for dynamic systems control,” IEEE Trans. on Neural Networks, Vol. 6, No. 1, pp. 144-156, 1995.
[25]M. A. Brdys and G. J. Kulawski, “Dynamic neural controllers for induction motor,” IEEE Trans. on Neural Networks, Vol. 10, No.2, pp. 340-355, 1999.
[26]H. Sato, F. Arai, H. Ishihard, T. Fukuda, H. Iutatu and K. Itoigawa, “New PZT Actuator Using Piezoelectric Thin Film on Parallel Plate Structure,” IEEE International Symposium on Micromechatronics and Human Science, Vol. 52, No. 6, pp. 79-84, October 1997.
[27]A. E. Glazounov, S. Wang, Q. M. Zhang and C. Kim, “Piezoelectric Stepper Motor with Direct Coupling Mechanism to Achieve High Efficiency and Precise Control of Motion,” IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 47, No. 4, July 2000.
[28]Q. M. Zhang and A. Glazounov, “Torsional Inchworm Ultrasonic Piezomotor Combining Continuous Rotation with Precise Control over Angular Positions and High Torque Output,” IEEE Proc. Ultrasonics, Vol. 1, pp. 661-665, October 1999.
[29]H. V. Barth, “Ultrasonic Driven Motor,” IBM Technological Disclosure Bulletin 16, No. 7, pp. 2263, December 1973.
[30]T. Sashida and T. Kenjo, An Introduction to Ultrasonic Motors, Clarendon Press, Oxford, 1993.
[31]F. J. Lin and Y.-C. Hung and S.-Y. Chen, "FPGA-Based Computed Force Control System Using Elman Neural Network for Linear Ultrasonic Motor," IEEE Trans. on Industrial Electronics, Vol. 56, No. 4, pp. 1238-1253, April 2009.
[32]F. J. Lin and R. J. Wai, “Hybrid Control Using Recurrent Fuzzy Neural Network for Linear-Induction Motor Servo Drive”IEEE Trans. on Fuzzy System, Vol. 9, No. 1, pp. 102-114, Feb. 2001.
[33]F. J. Lin and Po-Kai Huang, "Recurrent-Fuzzy-Neural-Network-Controlled Linear Induction Motor Servo Drive Using Genetic Algorithms," IEEE Trans. on Industrial Electronics, Vol. 54, No. 3, pp. 1449-1461, June 2007.
[34]F. J. Lin and P.-H. Shen, "Robust Fuzzy Neural Network Sliding-Mode Control for Two-Axis Motion Control System," IEEE Trans. on Industrial Electronics, Vol. 53, No. 4, pp. 1209- 1225, August 2006.
[35]C. H. Wang, T. C. Lin and H. L. Liu, “Adaptive Hybrid Intelligent Control for Uncertain Nonlinear Dynamical System,”IEEE Trans. on Systems, Man and Cybernetics, Vol. 32, No.5, pp. 583-597, Oct. 2002.
[36]C. M. Lin, C. H. Chen and W. L. Chin,“Adaptive Recurrent Fuzzy Neural Network for Linearized Multivariable Systems,”IEEE Trans. on Fuzzy System, Vol. 47, No. 4, pp. 709-714, July. 2004.
[37]T. J. Ren and T. C. Chen,“Robust speed-controlled induction motor drive based on recurrent neural network,”Electronic. Power Systems, Vol. 76, pp. 1064-1074, 2006.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw