進階搜尋


下載電子全文  
系統識別號 U0026-2107201011482900
論文名稱(中文) 運動訓練對於第一型糖尿病鼠血清類胰島素生長因子-1和主動脈細胞凋亡的影響
論文名稱(英文) Effects of exercise training on serum insulin-like growth factor-1 and aortic apoptosis in type 1 diabetic rats
校院名稱 成功大學
系所名稱(中) 物理治療研究所
系所名稱(英) Department of Physical Therapy
學年度 98
學期 2
出版年 99
研究生(中文) 李佳玲
研究生(英文) Chia-Ling Li
學號 t6697404
學位類別 碩士
語文別 英文
論文頁數 61頁
口試委員 指導教授-洪菁霞
口試委員-陳郁文
口試委員-陳勝咸
中文關鍵字 運動  胰島素  細胞凋亡 
英文關鍵字 exercise  insulin  apoptosis 
學科別分類
中文摘要 背景及目的:心血管疾病是造成糖尿病患產生併發症和高致死率的主要原因,在糖尿病血管病變發展過程中,血管平滑肌細胞凋亡是一個重要關鍵的因素。研究指出,第一型糖尿病之血清類胰島素生長因子-1(insulin-like growth factor-1, IGF-1)濃度會降低,而類胰島素生長因子-1可以抑制主動脈細胞凋亡的現象。因此,本研究的目的乃欲探討在第一型糖尿病鼠中,運動訓練對於血清類胰島素生長因子-1和主動脈細胞凋亡的影響,及其背後的原理機制。方法:將八週大雄性wistar大鼠隨機分為六組,分別是正常組(normal sedentary rats, NS),正常組合併運動訓練(normal-exercised rats, NE),糖尿病組(streptozotocin-induced diabetic rats without exercise training, SS),糖尿病組合併運動訓練(streptozotocin-induced diabetic rats with exercise training, SE),糖尿病組合併胰島素治療(streptozotocin-induced diabetic rats without exercise training combine with insulin treatment, SS+IT),和糖尿病組合併運動訓練及胰島素治療(streptozotocin-induced diabetic rats with exercise training and insulin treatment, SE+IT)。運動訓練組會以鼠用跑步機進行四週的中度運動訓練,每週五天,每天六十分鐘,速度在15~21公尺/分鐘,在最後一次運動訓練結束後四十八小時,取下大鼠的血液樣本分析血清類胰島素生長因子-1的濃度,並分析胸主動脈phospho-Akt,phospho-Bad,active caspase-9和pro-caspase-3表現量以了解細胞凋亡的情形。結果:我們發現(1)在糖尿病組中,血清類胰島素生長因子-1的濃度是顯著比正常組低(P<0.05)。比較正常組和正常組合併運動訓練,發現運動訓練可以增加血清類胰島素生長因子-1的濃度(P<0.05),在糖尿病合併運動訓練組,運動訓練也可以增加血清類胰島素生長因子-1的濃度。(2)在糖尿病組中,主動脈細胞的phospho-Akt表現量明顯低於正常組(P<0.05),經由運動訓練可以顯著增加正常組和糖尿組主動脈細胞的phospho-Akt表現量(P<0.05)。(3)在糖尿病組中,主動脈的phospho-Bad表現量明顯低於正常組(P<0.05)。(4)在糖尿病組中,主動脈的active caspase-9表現量顯著高於正常組(P<0.05)。運動訓練可以降低在糖尿病鼠主動脈之active caspase-9的表現量。(5)在糖尿病組中,主動脈細胞的pro-caspase-3表現量顯著比正常組低(P<0.05)。在正常組和糖尿病組中,經由運動訓練可以增加pro-caspase-3的表現量(P<0.05)。(6)胰島素治療可以增加糖尿病鼠血清類胰島素生長因子-1的濃度及主動脈細胞的phospho-Akt、phospho-Bad、pro-caspase-3表現量。結論:第一型糖尿病鼠血清中之類胰島素生長因子-1濃度較正常鼠低,而使其主動脈啟動較多的粒線體路徑之細胞凋亡。運動訓練和胰島素治療可以增加第一型糖尿病鼠中血清類胰島素生長因子-1,進而活化主動脈中phospho-Akt、抑制caspase-3的活化,達到減少糖尿病鼠之主動脈細胞凋亡。臨床意義:中度運動訓練和胰島素治療對於第一型糖尿病是有益處的。
英文摘要 Background and Purpose: Vascular diseases are the main causes of morbidity and mortality in diabetes. In the development of diabetic angiopathy, vascular smooth muscle cells apoptosis is a critical factor. Previous studies indicated that serum level of insulin-like growth factor-1(IGF-1) is decreased in type 1 diabetes, and IGF-1 was found to inhibit aortic apoptosis. Therefore, the purpose of this study was to investigate the effects of exercise training on serum IGF-1 and aortic apoptosis in type 1 diabetic rats. Methods: Eight weeks old male Wistar rats were divided into six groups: normal sedentary rats (NS), normal-exercised rats (NE), streptozotocin-induced diabetic rats without exercise training (SS), streptozotocin-induced diabetic rats with exercise training (SE), streptozotocin-induced diabetic rats without exercise training combine with insulin treatment (SS+IT), and streptozotocin-induced diabetic rats with exercise training and insulin treatment (SE+IT). Rats in the exercise group run on a treadmill 5 days/week, 60 min/day at 15~21 m/min for 4 weeks. Forty-eight hours after the last exercise session, blood samples were collected to determine the serum concentration of IGF-1 by ELISA. Phospho-Akt, phospho-Bad, active caspase-9 and pro-caspase-3 expression in aortic cells were also analyzed by western blotting. Results: We found that 1) Serum IGF-1 was reduced in diabetes (P<0.05). Exercise training could increase IGF-1 concentrations when comparing NE to NS (P<0.05) and could slightly increase IGF-1 concentrations when comparing SE to SS. 2) The expression of phospho-Akt in aortic cells of diabetes was significantly decreased (P<0.05). Exercise training could increase phospho-Akt expression in normal and diabetic rats (P<0.05). 3) The expression of phospho-Bad in aortic cells of diabetes was significantly decreased (P<0.05). 4) The expression of active caspase-9 in aortic cells of diabetes was significantly increased (P<0.05). Exercise training could slightly decrease the expression of active caspase-9 in diabetec rats. 5) The expression of pro-caspase-3 in aortic cells of diabetes was significantly decreased (P<0.05). Exercise training could increase pro-caspase-3 expression in normal and diabetic rats (P<0.05). 6) insulin treatment could increase IGF-1 concentrations, the expression of phospho-Akt, phospho-Bad and pro-caspase-3 in aortic cells (P<0.05). Conclusions: The serum level of IGF-1 was lower and the aortic mitochondrial-dependent apoptotic pathway was more activated in diabetic rats than in normal rats. Exercise training and insulin treatment could decrease the aortic apoptosis in diabetes through the increased concentration of serum IGF-1, activation of phospho-Akt and inhibition of caspase-3 activation. Clinical Relevance: These findings suggest physical exercise training and insulin treatment are beneficial for type 1 diabetes.
論文目次 Abstract in Chinese-------------------------------------1
Abstract------------------------------------------------3
Acknowledgements----------------------------------------5
List of figures-----------------------------------------7
Introduction-------------------------------------------12 
Materials and methods ---------------------------------16 
Results------------------------------------------------23 
Discussion---------------------------------------------28
Conclusions--------------------------------------------34
References---------------------------------------------35
Figures------------------------------------------------46 
參考文獻 1.Allen DA, Yaqoob MM, and Harwood SM. Mechanisms of high glucose-induced apoptosis and its relationship to diabetic complications. J Nutr Biochem 16: 705-713, 2005.
2.Angulo J, Rodriguez-Manas L, Peiro C, Neira M, Marin J, and Sanchez-Ferrer CF. Impairment of nitric oxide-mediated relaxations in anaesthetized autoperfused streptozotocin-induced diabetic rats. Naunyn Schmiedebergs Arch Pharmacol 358: 529-537, 1998.
3.Anwar A, Zahid AA, Scheidegger KJ, Brink M, and Delafontaine P. Tumor necrosis factor-alpha regulates insulin-like growth factor-1 and insulin-like growth factor binding protein-3 expression in vascular smooth muscle. Circulation 105: 1220-1225, 2002.
4.Bai H, Pollman MJ, Inishi Y, and Gibbons GH. Regulation of vascular smooth muscle cell apoptosis. Modulation of bad by a phosphatidylinositol 3-kinase-dependent pathway. Circ Res 85: 229-237, 1999.
5.Bang P, Brandt J, Degerblad M, Enberg G, Kaijser L, Thoren M, and Hall K. Exercise-induced changes in insulin-like growth factors and their low molecular weight binding protein in healthy subjects and patients with growth hormone deficiency. Eur J Clin Invest 20: 285-292, 1990.
6.Berg U and Bang P. Exercise and circulating insulin-like growth factor I. Horm Res 62 Suppl 1: 50-58, 2004.
7.Chen Hi H, Chiang IP, and Jen CJ. Exercise Training Increases Acetylcholine-Stimulated Endothelium-Derived Nitric Oxide Release in Spontaneously Hypertensive Rats. J Biomed Sci 3: 454-460, 1996.
8.Chicharro JL, Lopez-Calderon A, Hoyos J, Martin-Velasco AI, Villa G, Villanua MA, and Lucia A. Effects of an endurance cycling competition on resting serum insulin-like growth factor I (IGF-I) and its binding proteins IGFBP-1 and IGFBP-3. Br J Sports Med 35: 303-307, 2001.
9.Clemmons DR, Moses AC, McKay MJ, Sommer A, Rosen DM, and Ruckle J. The combination of insulin-like growth factor I and insulin-like growth factor-binding protein-3 reduces insulin requirements in insulin-dependent type 1 diabetes: evidence for in vivo biological activity. J Clin Endocrinol Metab 85: 1518-1524, 2000.
10.Conti E, Carrozza C, Capoluongo E, Volpe M, Crea F, Zuppi C, and Andreotti F. Insulin-like growth factor-1 as a vascular protective factor. Circulation 110: 2260-2265, 2004.
11.Creager MA, Luscher TF, Cosentino F, and Beckman JA. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: Part I. Circulation 108: 1527-1532, 2003.
12.Cui QL, Zheng WH, Quirion R, and Almazan G. Inhibition of Src-like kinases reveals Akt-dependent and -independent pathways in insulin-like growth factor I-mediated oligodendrocyte progenitor survival. J Biol Chem 280: 8918-8928, 2005.
13.de Almeida Leme JA, de Araujo MB, de Moura LP, Gomes RJ, de Moura RF, Rogatto GP, de Mello MA, and Luciano E. Effects of physical training on serum and pituitary growth hormone contents in diabetic rats. Pituitary, 2009.
14.Delafontaine P, Song YH, and Li Y. Expression, regulation, and function of IGF-1, IGF-1R, and IGF-1 binding proteins in blood vessels. Arterioscler Thromb Vasc Biol 24: 435-444, 2004.
15.Dunger DB and Acerini CL. IGF-I and diabetes in adolescence. Diabetes Metab 24: 101-107, 1998.
16.Eliakim A, Brasel JA, Mohan S, Barstow TJ, Berman N, and Cooper DM. Physical fitness, endurance training, and the growth hormone-insulin-like growth factor I system in adolescent females. J Clin Endocrinol Metab 81: 3986-3992, 1996.
17.Engberding N, San Martin A, Martin-Garrido A, Koga M, Pounkova L, Lyons E, Lassegue B, and Griendling KK. Insulin-like growth factor-1 receptor expression masks the antiinflammatory and glucose uptake capacity of insulin in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 29: 408-415, 2009.
18.Fernandez M, Sanchez-Franco F, Palacios N, Sanchez I, Fernandez C, and Cacicedo L. IGF-I inhibits apoptosis through the activation of the phosphatidylinositol 3-kinase/Akt pathway in pituitary cells. J Mol Endocrinol 33: 155-163, 2004.
19.Filaire E, Jouanel P, Colombier M, Begue RJ, and Lac G. Effects of 16 weeks of training prior to a major competition on hormonal and biochemical parameters in young elite gymnasts. J Pediatr Endocrinol Metab 16: 741-750, 2003.
20.Franklin VL, Khan F, Kennedy G, Belch JJ, and Greene SA. Intensive insulin therapy improves endothelial function and microvascular reactivity in young people with type 1 diabetes. Diabetologia 51: 353-360, 2008.
21.Frystyk J, Ledet T, Moller N, Flyvbjerg A, and Orskov H. Cardiovascular disease and insulin-like growth factor I. Circulation 106: 893-895, 2002.
22.Fukumoto H, Naito Z, Asano G, and Aramaki T. Immunohistochemical and morphometric evaluations of coronary atherosclerotic plaques associated with myocardial infarction and diabetes mellitus. J Atheroscler Thromb 5: 29-35, 1998.
23.Goke B and Fehmann HC. Insulin and insulin-like growth factor-I: their role as risk factors in the development of diabetic cardiovascular disease. Diabetes Res Clin Pract 30 Suppl: 93-106, 1996.
24.Gomes RJ, Leme JA, de Moura LP, de Araujo MB, Rogatto GP, de Moura RF, Luciano E, and de Mello MA. Growth factors and glucose homeostasis in diabetic rats: effects of exercise training. Cell Biochem Funct 27: 199-204, 2009.
25.Hamdy O, Ledbury S, Mullooly C, Jarema C, Porter S, Ovalle K, Moussa A, Caselli A, Caballero AE, Economides PA, Veves A, and Horton ES. Lifestyle modification improves endothelial function in obese subjects with the insulin resistance syndrome. Diabetes Care 26: 2119-2125, 2003.
26.Han HJ, Kang CW, and Park SH. Tissue-specific regulation of insulin-like growth factors and insulin-like growth factor binding proteins in male diabetic rats in vivo and in vitro. Clin Exp Pharmacol Physiol 33: 1172-1179, 2006.
27.Han HJ and Park SH. Alteration of the gene and protein levels of insulin-like growth factors in streptozotocin-induced diabetic male rats. J Vet Med Sci 68: 413-419, 2006.
28.Hayashi K, Shibata K, Morita T, Iwasaki K, Watanabe M, and Sobue K. Insulin receptor substrate-1/SHP-2 interaction, a phenotype-dependent switching machinery of insulin-like growth factor-I signaling in vascular smooth muscle cells. J Biol Chem 279: 40807-40818, 2004.
29.Haydar ZR, Blackman MR, Tobin JD, Wright JG, and Fleg JL. The relationship between aerobic exercise capacity and circulating IGF-1 levels in healthy men and women. J Am Geriatr Soc 48: 139-145, 2000.
30.Hemmings BA. Akt signaling: linking membrane events to life and death decisions. Science 275: 628-630, 1997.
31.Hsieh T, Gordon RE, Clemmons DR, Busby WH, Jr., and Duan C. Regulation of vascular smooth muscle cell responses to insulin-like growth factor (IGF)-I by local IGF-binding proteins. J Biol Chem 278: 42886-42892, 2003.
32.Jamali R, Bao M, and Arnqvist HJ. IGF-I but not insulin inhibits apoptosis at a low concentration in vascular smooth muscle cells. J Endocrinol 179: 267-274, 2003.
33.Jung F, Haendeler J, Goebel C, Zeiher AM, and Dimmeler S. Growth factor-induced phosphoinositide 3-OH kinase/Akt phosphorylation in smooth muscle cells: induction of cell proliferation and inhibition of cell death. Cardiovasc Res 48: 148-157, 2000.
34.Kajstura J, Fiordaliso F, Andreoli AM, Li B, Chimenti S, Medow MS, Limana F, Nadal-Ginard B, Leri A, and Anversa P. IGF-1 overexpression inhibits the development of diabetic cardiomyopathy and angiotensin II-mediated oxidative stress. Diabetes 50: 1414-1424, 2001.
35.Kaytor EN, Zhu JL, Pao CI, and Phillips LS. Physiological concentrations of insulin promote binding of nuclear proteins to the insulin-like growth factor I gene. Endocrinology 142: 1041-1049, 2001.
36.Kermer P, Klocker N, Labes M, and Bahr M. Insulin-like growth factor-I protects axotomized rat retinal ganglion cells from secondary death via PI3-K-dependent Akt phosphorylation and inhibition of caspase-3 In vivo. J Neurosci 20: 2-8, 2000.
37.Kobayashi T and Kamata K. Short-term insulin treatment and aortic expressions of IGF-1 receptor and VEGF mRNA in diabetic rats. Am J Physiol Heart Circ Physiol 283: H1761-1768, 2002.
38.Laviola L, Natalicchio A, and Giorgino F. The IGF-I signaling pathway. Curr Pharm Des 13: 663-669, 2007.
39.Le Roith D. Seminars in medicine of the Beth Israel Deaconess Medical Center. Insulin-like growth factors. N Engl J Med 336: 633-640, 1997.
40.Leme JA, Gomes RJ, de Mello MA, and Luciano E. Effects of short-term physical training on the liver IGF-I in diabetic rats. Growth Factors 25: 9-14, 2007.
41.Li W, Yang SY, Hu ZF, Winslet MC, Wang W, and Seifalian AM. Growth factors enhance endothelial progenitor cell proliferation under high-glucose conditions. Med Sci Monit 15: BR357-363, 2009.
42.Li XA, Bianchi C, and Sellke FW. Rat aortic smooth muscle cell density affects activation of MAP kinase and Akt by menadione and PDGF homodimer BB. J Surg Res 100: 197-204, 2001.
43.Milliken LA, Going SB, Houtkooper LB, Flint-Wagner HG, Figueroa A, Metcalfe LL, Blew RM, Sharp SC, and Lohman TG. Effects of exercise training on bone remodeling, insulin-like growth factors, and bone mineral density in postmenopausal women with and without hormone replacement therapy. Calcif Tissue Int 72: 478-484, 2003.
44.Moien-Afshari F, Ghosh S, Elmi S, Rahman MM, Sallam N, Khazaei M, Kieffer TJ, Brownsey RW, and Laher I. Exercise restores endothelial function independently of weight loss or hyperglycaemic status in db/db mice. Diabetologia 51: 1327-1337, 2008.
45.Muto A, Fitzgerald TN, Pimiento JM, Maloney SP, Teso D, Paszkowiak JJ, Westvik TS, Kudo FA, Nishibe T, and Dardik A. Smooth muscle cell signal transduction: implications of vascular biology for vascular surgeons. J Vasc Surg 45 Suppl A: A15-24, 2007.
46.Pao CI, Farmer PK, Begovic S, Goldstein S, Wu GJ, and Phillips LS. Expression of hepatic insulin-like growth factor-I and insulin-like growth factor-binding protein-1 genes is transcriptionally regulated in streptozotocin-diabetic rats. Mol Endocrinol 6: 969-977, 1992.
47.Ranke MB. Insulin-like growth factor-I treatment of growth disorders, diabetes mellitus and insulin resistance. Trends Endocrinol Metab 16: 190-197, 2005.
48.Ren J, Samson WK, and Sowers JR. Insulin-like growth factor I as a cardiac hormone: physiological and pathophysiological implications in heart disease. J Mol Cell Cardiol 31: 2049-2061, 1999.
49.Rivero F, Goya L, Alaez C, and Pascual-Leone AM. Effects of undernutrition and diabetes on serum and liver mRNA expression of IGFs and their binding proteins during rat development. J Endocrinol 145: 427-440, 1995.
50.Roberts CK, Won D, Pruthi S, Lin SS, and Barnard RJ. Effect of a diet and exercise intervention on oxidative stress, inflammation and monocyte adhesion in diabetic men. Diabetes Res Clin Pract 73: 249-259, 2006.
51.Rosendal L, Langberg H, Flyvbjerg A, Frystyk J, Orskov H, and Kjaer M. Physical capacity influences the response of insulin-like growth factor and its binding proteins to training. J Appl Physiol 93: 1669-1675, 2002.
52.Rubio-Guerra AF, Vargas-Robles H, Serrano AM, Lozano-Nuevo JJ, and Escalante-Acosta BA. Correlation between the levels of circulating adhesion molecules and atherosclerosis in type-2 diabetic normotensive patients: circulating adhesion molecules and atherosclerosis. Cell Adh Migr 3: 369-372, 2009.
53.Sartorio A, Lafortuna C, Capodaglio P, Vangeli V, Narici MV, and Faglia G. Effects of a 16-week progressive high-intensity strength training (HIST) on indexes of bone turnover in men over 65 years: a randomized controlled study. J Endocrinol Invest 24: 882-886, 2001.
54.Shimomura I, Bashmakov Y, Ikemoto S, Horton JD, Brown MS, and Goldstein JL. Insulin selectively increases SREBP-1c mRNA in the livers of rats with streptozotocin-induced diabetes. Proc Natl Acad Sci U S A 96: 13656-13661, 1999.
55.Sowers JR. Insulin and insulin-like growth factor in normal and pathological cardiovascular physiology. Hypertension 29: 691-699, 1997.
56.Stratton MS, Yang X, Sreejayan N, and Ren J. Impact of insulin-like growth factor-I on migration, proliferation and Akt-ERK signaling in early and late-passages of vascular smooth muscle cells. Cardiovasc Toxicol 7: 273-281, 2007.
57.Takahashi Y, Tobe K, Kadowaki H, Katsumata D, Fukushima Y, Yazaki Y, Akanuma Y, and Kadowaki T. Roles of insulin receptor substrate-1 and Shc on insulin-like growth factor I receptor signaling in early passages of cultured human fibroblasts. Endocrinology 138: 741-750, 1997.
58.Thrailkill KM. Insulin-like growth factor-I in diabetes mellitus: its physiology, metabolic effects, and potential clinical utility. Diabetes Technol Ther 2: 69-80, 2000.
59.Vincent AM and Feldman EL. Control of cell survival by IGF signaling pathways. Growth Horm IGF Res 12: 193-197, 2002.
60.Werner C, Furster T, Widmann T, Poss J, Roggia C, Hanhoun M, Scharhag J, Buchner N, Meyer T, Kindermann W, Haendeler J, Bohm M, and Laufs U. Physical exercise prevents cellular senescence in circulating leukocytes and in the vessel wall. Circulation 120: 2438-2447, 2009.
61.Wild S, Roglic G, Green A, Sicree R, and King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27: 1047-1053, 2004.
62.Yang L, Froio RM, Sciuto TE, Dvorak AM, Alon R, and Luscinskas FW. ICAM-1 regulates neutrophil adhesion and transcellular migration of TNF-alpha-activated vascular endothelium under flow. Blood 106: 584-592, 2005.
63.Zeng G and Quon MJ. Insulin-stimulated production of nitric oxide is inhibited by wortmannin. Direct measurement in vascular endothelial cells. J Clin Invest 98: 894-898, 1996.
64.Zoppini G, Targher G, Zamboni C, Venturi C, Cacciatori V, Moghetti P, and Muggeo M. Effects of moderate-intensity exercise training on plasma biomarkers of inflammation and endothelial dysfunction in older patients with type 2 diabetes. Nutr Metab Cardiovasc Dis 16: 543-549, 2006.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-07-27起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-07-27起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw