系統識別號 U0026-2106201214462800
論文名稱(中文) 單晶太陽能矽晶片焊接殘留應力與翹曲分析
論文名稱(英文) Analysis of residual stress and warpage induced by soldering in monocrystalline silicon wafers
校院名稱 成功大學
系所名稱(中) 土木工程學系碩博士班
系所名稱(英) Department of Civil Engineering
學年度 100
學期 2
出版年 101
研究生(中文) 蘇季鴻
研究生(英文) Chi-Hung Su
學號 n66994099
學位類別 碩士
語文別 中文
論文頁數 116頁
口試委員 口試委員-林大惠
中文關鍵字 太陽能矽晶片  焊接  有限元素法  翹曲  殘留應力 
英文關鍵字 solar cell  soldering process  finite element  warpage  residual stress 
中文摘要 近年來,太陽能產業的迅速發展,導致半導體材料的日益短缺,基於成本考量,太陽能矽晶片朝大尺寸薄形化發展,然而晶片為求導電性與能量的輸出,必須透過焊接製程該項程序,往往導致太陽能矽晶片翹曲變形大幅增加,不利於日後晶片之封裝製程,甚至造成晶片的破損、縮短太陽能晶片的使用年限,因此,如何減少晶片翹曲變形及降低焊接製程晶片殘留應力將是太陽能矽晶片製程產業的重要議題。
本文依單晶太陽能矽晶片焊接製程進行實驗量測,並採用ANSYS有限元素數值模擬工具分析焊接製程降溫過程中單晶太陽能矽晶片翹曲變形行為,最後將數值模擬結果與實驗量測數據加以分析比對,確保數值模擬分析流程建立之正確性,接著再利用本文所建立之數值模擬分析模式,考慮不同晶片之幾何參數對單晶太陽能矽晶片焊接製程結構行為的影響 ; 並更進一步探討不同幾何形狀參數下矽晶片裂縫對應力行為及應力強度因子的變化情形,最後根據實驗與數值模擬所得的結果作出結論與建議,以供後續太陽能矽晶片相關焊接製程行為研究之參考。
英文摘要 In recent years, PV manufacturing develops rapidly, and as the result, it gradually leads to the decreasing of semiconductor material. Solar cell as semiconductor material undergoes vast reduction in cell thicknesses, yet greater dimension as the consequence of costs considerations is inevitable. Solar cell also requires the electric conductivity and power output, which can be achieved through the soldering process. However, the process usually lead to substantial increase of warpage in silicon wafer, which is not good for the packing process of wafer itself and may seriously damage and reduce wafer life use. Therefore, how to reduce warpage and residual stress in wafer soldering process will be an important issue in the future.
In this paper, both finite element simulation from ANSYS and experimental measurement were conducted to analyze the behavior of the soldering process in monocrystalline silicon wafers warpage. Comparison between both methods was carried out to verify the accuracy of numerical simulation analysis process. The results of verified numerical simulation method were utilized to assess different geometric parameters of monocrystalline silicon wafers, which affect it structural behavior in the soldering process. Furthermore, investigation of the crack variations of silicon wafers under the specified different geometry parameters regarding the stress behavior and intensity factor was also examined in this research. Eventually, in accordance with the results from experiment and numerical simulation, conclusions and recommendations can be made as future references concerning silicon wafer soldering process.
論文目次 目錄
摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 3
1.3文獻回顧 3
1.4論文架構 6
第二章 製程步驟及實驗方法 7
2.1 前言 7
2.2 焊接製程 7
2.3 實驗規劃與設計 9
2.3.1 晶片溫度量測之熱電偶配置與設定 9
2.3.2 晶片翹曲變形量量測 10
2.4 實驗結果與討論 10
2.4.1 單晶太陽能矽晶片之溫度分析 11
2.4.2 單晶太陽能矽晶片之翹曲變形量分析 14
2.5 單晶太陽能矽晶片三點彎曲試驗 14
2.6 電致發光之單晶太陽能矽晶片檢測 16
2.6.1電致發光原理簡介 16
2.6.2電致發光之實驗流程與設置 16
2.6.3晶片檢測結果 18
第三章 基礎理論 20
3.1 翹曲分析基礎理論 20
3.1.1 Timoshenko Bi-Metal翹曲理論 20
3.1.2 Suhir熱應力與翹曲理論 22
3.1.3 多層板變形翹曲分析 26
3.2 有限元素法熱應力基礎理論 27
3.3 有限元素法裂縫分析基礎理埨 30
3.3.1奇異元素 30 四邊形元素 30 三角形元素 32
3.3.2 應力強度因子 34
第四章 數值模擬 36
4.1 前言 36
4.2 材料參數設定 36
4.3 數值模擬架構設定 38
4.3.1分析假設 47
4.4 數值模擬之幾何參數案例規劃 48
4.4.1 一般模型 48
4.4.2 裂縫模型 50
4.5 數值模擬與實驗結果比對 50
第五章 數值模擬結果與討論 55
5.1 前言 55
5.2 參考基準Basic Model討論 55
5.3 單晶太陽能矽晶片厚度變更分析 62
5.4 單晶太陽能矽晶片焊條厚度變更分析 69
5.5 單晶太陽能矽晶片焊條寬度變更分析 76
5.6 單晶太陽能矽晶片鋁膠厚度變更分析 83
5.7 混合型變更分析 90
5.8 小結 101
5.9 單晶太陽能矽晶片裂縫應力分析 103
5.10 應力強度因子分析 109
第六章 結論與建議 111
6.1 結論 112
6.2 建議 113
參考文獻 114
參考文獻 參考文獻
 ANSYS (2004). ANSYS User’s Manual Revision 13.0, ANSYS, Inc., Canonsburg, Pennsylvania.
 Barsoum, R. S. (1976). On the Use of Isoparametric Finite Elements in Linear Fracture Mechanics. International Journal for Numerical Methods in Engineering, 10 (1). 25-37.
 Borrero-Lopez, O., Vodenitcharova, T., Hoffman, M., & Leo, A.J. (2009). Fracture strength of polycrystalline silicon wafers for the photovoltaic industry. Journal of the American Ceramic Society, 92 (11). 2713-2717.
 Eishen, J. W., Chung, C. & Kim, J. (1990). Realistic Modeling of Edge-Effect Stresses in Bi-Material Elements. ASME Journal of Electronic Packaging, 112 (1).
 Gabor, A. M., Ralli, M., Montminy, S., Alegria, L., Bordonaro, C., Woods, J., et al. (2006, September). Soldering Induced Damage to Thin Si Solar Cells and Detection of Cracked Cells in Modules. Proceedings of the 21nd European Photovoltaic Solar Energy Cenference, Dresden.
 Henshell, R. D. & Shaw, K. G. (1975). Crack tip Finite Elements are Unnecessary. International Journal for Numerical Methods in Engineering, 9 (3). 495-507.
 Huster, F. (2005, June). Alumnium-Back Surface Field: Bow Investigation and Elimination. Proceedings of the 20nd European Photovoltaic Solar Energy Cenference, Barcelona.
 Irwin, G. R. (1957). Analysis of Stresses and Strains Near The End of A Crack Traveling A Plate. Transaction of ASME Journal of Applied Mechanics, 24 (3). 361-364.
 Khadilkar, C., Kim S., Shaikh, A., Sridharan, S., & Pham, T. (2005). Characterization of Al Back Contact in a Silicon Solar Cell. Proceedings of the International PVSEC-15, Shanghai, China.
 Kim, S., Shaikh, A., Sridharan, S., Khadilkar, C., & Pham, T. (2004). Aluminum Pastes for Thin Wafers. Proceedings of the 19th European Photovoltaic Solar Energy Conference, Paris, France.
 Kohn, C., Faber, T., Kübler, R., Beinert, J., Kleer, G., Clement, F., et al. (2007, September). Analyses of Warpage Effects Induced by Passivation and Electrode Coatings in Silicon Solar Cells. Proceedings of the 22nd European Photovoltaic Solar Energy Cenference and Exhibition, Milan, Italy.
 Micciche, M., Brad, D., and Shawn, S. (2007). Understanding the Causes Cell Breakage During the Cell Interconnecting Process-Part II. Proceedings of the 22nd European Photovoltaic Solar Energy Cenference, Milan, Italy.
 Nieland, S., Baehr, M., Boettger, A., Ostmann, A. & Reichl, H., (2007). Advantages of Microelectronic Packaging for Low Temperature Lead Free Soldering of Thin Solar Cells. 22th European Photovoltaic Solar Energy Conference, Milan, Italy.
 Pan, T. Y. & Pao, Y. H. (1990). Deformation in Multilayer Stacked Assemblies. ASME Journal of Electronic Packaging, 112. 30-34.
 Pingel, S., Zemen, Y., Frank, O., Geipel, T. & Berghold, J. (2009). Mechanical Stability of Solar Cells Within Solar Panels. Proceedings of the 24nd European Photovoltaic Solar Energy Cenference and Exhibition, Dresden, Germany.
 Rupnowski, P., & Sopori, B. (2009). Strength of Silicon Wafers: Fracture Mechanics Approach. International Journal of Fracture, 155 (1). 67-74.
 Suhir, E. (1986). Stresses in Bi-Metal Thermostats. ASME Journal of Applied Mechanics, 53. 657-660.
 Suhir, E. (2006). Interfacial Thermal Stresses in a Bi-Material Assembly with a Low-Yield-Stress Bonding Layer. Modeling and Simulation in Materials Science and Engineering, 14. 1421-1432.
 Timoshenko, S. (1925). Analysis of Bi-Metal Thermostats. Journal of the Optical Society of America, 11 (3). 233-255.
 Wu, Chang Yang., Ay H., Yang Jyun Ciou. (2011), A Study of Optimal Manufacturing Parameters With Lead-Free Solder on the C-Si Photovoltaic Cells by Using Hot-Air Tabbing. Paper presented at National Kaohsiung University of Applied Sciences, Taiwan, R.O.C.
 劉心怡,洪雅慧,何宗漢,2010,「銀膠種類及厚度對構裝後晶片可靠度的影響」,工程科技與教育學刊,第七卷第四期,p.546-559。
 戴寶通教授,鄭晃忠教授,2008,「太陽能電池技術手冊」。
  • 同意授權校內瀏覽/列印電子全文服務,於2017-07-10起公開。

  • 如您有疑問,請聯絡圖書館