進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2104201720503400
論文名稱(中文) 橋接雙釕與雙銅錯合物的合成,構造及特性之研究
論文名稱(英文) Study on Synthesis, Structures, and Properties of Bridged Diruthenium and Dicopper Complexes
校院名稱 成功大學
系所名稱(中) 化學系
系所名稱(英) Department of Chemistry
學年度 105
學期 2
出版年 106
研究生(中文) 許樂群
研究生(英文) Ler-Chun Shiu
電子信箱 ncku23@gmail.com
學號 L38011093
學位類別 博士
語文別 英文
論文頁數 267頁
口試委員 指導教授-吳天賞
指導教授-許拱北
口試委員-吳天賞
口試委員-王文竹
口試委員-李漢文
口試委員-翁榮源
口試委員-呂光烈
中文關鍵字 超分子化學  自組裝  動態系統  密度泛函計算  一氧化氮配位基    釕. 
英文關鍵字 Supramolecular  Self-assembly  Dynamic systems  DFT(Density Functional Theory) calculation  Nitrosyl  Copper  Ruthenium. 
學科別分類
中文摘要 超分子盒子能經由對稱-作用,方向-鍵結,微弱-吸引,及動態-組裝等途徑合成.雙銅錯合物[Cu2(μ-dppm)2(μ-OAc)]+及各種sigma donor (L; L = py, MeCN, THF, Acetone, MeOH)的實驗及理論研究與雙銅錯合物[Cu2(μ-dppm)2(μ-O2CR)]+及雙py化合物(NN, NN = 4,4’-dipyridine (bpy),1,2-乙基雙(4-py)(bpa),反式1,2-乙烯雙(4-py)(bpe),1,3-丙基雙(4-py)(tmp))的研究,引導我們去研究肆銅錯合物[{Cu2(μ-dppm)2}2(μ-1,3-C6H4(CO2)2)]2+及NN,意外地發現NN的剛柔性質會決定動態反應的產物種類.使用柔性及剛性NN,會分別得到超分子盒子和配位高分子.肆銅錯合物[{Cu2(μ-dppm)2}2(μ-1,4-C6H4(CO2)2)]2+及NN會形成帶正電荷之長方形超分子盒子[{(Cu2(μ-dppm)2)2(μ-1,4-C6H4(CO2)2)}2(μ-bpa)2]4+;一個及三個(BF4-)陰離子分別在盒內與盒外.研究發現盒子/陰離子間微弱的靜電吸引力能穩定帶正電荷之超分子盒子的動態組裝.
含NO2及NO3雙釕錯合物[Ru2(μ-CO)2(κ2-(O,O’)-NO2)2(μ-dppm)2] (2-6) 和[Ru2(μ-CO)2(κ2-(O,O’)-NO3)2(μ-dppm)2] (2-10)成功合成出來,化合物2-6可以轉變為[Ru2(μ-dppm)2(μ-CO)2(MeCN)4](BF4)2,[Ru2(μ-dppm)2(CO)2(tBuNC)4](PF6)2,[Ru2(μ-dppm)2(CO)2(μ-NO)(μ-Cl)Cl2] (2-8),及[Ru2(μ-dppm)2(CO)2(μ-H)(μ-Cl)Cl2] (2-9)。其中,化合物2-6,2-8,2-9及2-10已使用X光繞射解析其單晶構造。
英文摘要 Supramolecular cages can be synthesized via symmetry-interaction, directional-bonding, weak-link, and dynamic-self-assembly approaches. Both experimental and theoretical study of a simple dynamic system formed between dicopper complex [Cu2(μ-dppm)2(μ-OAc)]+ and various sigma donors (L; L = py, MeCN, THF, acetone, MeOH) in CH2Cl2 and study of that between dicopper complexes [Cu2(μ-dppm)2(μ-O2CR)]+ and neutral dipyridyl compound (NN, NN = 4,4’-bipyridine (bpy), 1,2-bis(4-pyridyl)ethane (bpa), and trans-1,2-bis(4-pyridyl)ethylene (bpe), and 4,4’-trimethylenedipyridine (tmp)) led us to study dynamic systems between tetracopper complex [{Cu2(μ-dppm)2}2(μ-1,3-C6H4(CO2)2)]2+ andNN (NN = bpa, tmp, bpy), unexpectedly finding that the flexibility of NN can determine the outcome of the dynamic reactions. The flexible NN can convert the tetracopper complex into supramolecular cages, but the rigid NN can convert the complex into a coordination polymer. The dynamic system between tetracopper complex [{Cu2(μ-dppm)2}2(μ-(1,4-C6H4(CO2)2)]2+ andNN (NN = bpa, bpy) can produce a rectangular cationic cage [{(Cu2(μ-dppm)2)2(μ-1,4-C6H4(CO2)2)}2(μ-bpa)2]4+ with an anion (BF4-) inside and three other anions outside. The study finds that the weak electrostatic interactions between the cationic cage and the anion are important in stabilizing the dynamically self-assembled cages.
Diruthenium carbonyl complexes containing two nitrito and nitrato ligands, [Ru2(μ-CO)2(κ2-(O,O’)-NO2)2(μ-dppm)2] (2-6) and [Ru2(μ-CO)2(κ2-(O,O’)-NO3)2(μ-dppm)2] (2-10), were prepared. Conversion reactions of compound 2-6 into [Ru2(μ-dppm)2(μ-CO)2(MeCN)4](BF4)2, [Ru2(μ-dppm)2(CO)2(tBuNC)4](PF6)2, [Ru2(μ-dppm)2(CO)2(μ-NO)(μ-Cl)Cl2] (2-8), and [Ru2(μ-dppm)2(CO)2(μ-H)(μ-Cl)Cl2] (2-9) were also studied. Crystal structures of compounds 2-6, 2-8, 2-9, and 2-10 were determined by X-ray crystallography.
論文目次 Chapter 1. Understanding supramolecular dynamic combinatorial systems formed by diphosphine-bridged dicopper(I) complexes 1
Introduction 1
Applications of supramolecular metallacycles 1
Symmetry-interaction approach 2
Directional-bonding approach 5
Weak-link approach 9
Self-assembly of dynamic cages 10
Cage compounds reported by this laboratory 11
Irreversible self-assembly of supramolecular cages 11
Reversible (dynamic) self-assembly of supramolecular cages 17
Research motivation and plan 25
Experimental section 26
General information 26
X-Ray crystallography 27
Theoretical calculations 29
Results and Discussion 31
About the dynamic system of [Cu2(-dppm)2(-MeCO2)]+ and various sigma donors (L) 31
About the dynamic system of [Cu2(-dppm)2(-MeCO2)]+ and bpy 39
About the dynamic system of [{Cu2(-dppm)2}2(-(1,3-O2CC6H4(CO2)2)](BF4)2 (6(BF4)2) and flexible dipyridyl compounds, 1,2-bis(4-pyridyl)ethane (bpa). 43
About the dynamic system of [{Cu2(-dppm)2}2(-(1,4-O2CC6H4(CO2)2)](BF4)2 (7(BF4)2) and bpa. 46
Conclusions 59
References 62

Chapter 2: Binding and Reactions of Nitrites in Diruthenium(I) Carbonyl Complexes 67
Introduction 67
Sodium nitrite as a chemical substance and uses in human 67
Nitrite in the nitrogen cycle - biological fate of nitrite 68
Coordination modes of nitrite with one transition-metal atom 70
Organometallic chemistry of bound nitrite groups 71
Organic synthesis using nitrite and Pd(II) complexes 72
Nitrite and related compounds reported by this laboratory 74
Motivation of research 75
Experimental section 76
General information 76
Synthesis of [Ru2(-CO)2(2-(O,O’)-NO2)2(-dppm)2] (6) 77
Reaction of [Ru2(-CO)2(2-(O,O’)-NO2)2(-dppm)2] (6) with excess t-BuNC. 85
Reaction of [Ru2(-CO)2(2-(O,O’)-NO2)2(-dppm)2] (6) with excess Et3O+BF4-. 86
Synthesis of [Ru2(-dppm)2(CO)2(-NO)(-Cl)Cl2] (8). 87
Synthesis of [Ru2(-dppm)2(CO)2(-H)(-Cl)Cl2] (9). 93
Synthesis of [Ru2(-CO)2(2-(O,O’)-NO3)2(-dppm)2] (10) 98
X-ray crystallography 102
Results and Discussion 107
Synthesis and Structures of Diruthenium Compounds with two nitrites and nitrates 107
Reactions of Diruthenium Dinitrito Compound (6) 111
Conclusions 116
References 117

參考文獻 References for chapter 1
1. Dalgarno, S. J.; Power, N. P.; Atwood, J. L. Coord. Chem. Rev. 2008, 252, 825.
2. Hof, F.; Craig, S. L.; Nuckools, C.; Rebek, Jr. J. Angew. Chem. Int. Ed. Engl. 2002, 41, 1488.
3. Inokuma, Y.; Kawano, M.; Fujita, M. Nature Chem. 2011, 3, 349.
4. Merlau, M. L.; Mejia, S. D. P.; Nguyen, S. T.; Hupp, J. T. Angew. Chem. Int. Ed. 2011, 40, 4239.
5. Fiedler, D.; Leung, D. H.; Bergman, R. G.; Raymond, K. N. Acc. Chem. Res. 2005, 38, 351.
6. Inokuma, Y.; Arail, T.; Fujita, M. Nature Chem. 2010, 2, 780.
7. Inokuma, Y.; Yoshioka, S.; Ariyoshi, J.; Arai, T.; Takada, K.; Matsunaga, S.; Rissanen, K.; Fujita, M. Nature, 2013, 495, 461.
8. Mal, P.; Breiner, B.; Rissanen, K.; Nitschke, J. R. Science, 2009, 324, 1697.
9. Kumar, A.; Sun, S.-S.; Lee, A. J. Coord. Chem. Rev. 2008, 252, 922.
10. Atwood, J. L.; Barbour, L. J.; Dalgarno, S. J.; Hardie, M. J.; Raston, C. L.; Webb, H. R. J. Am. Chem. Soc. 2004, 126, 13170.
11. Holliday, B. J.; Mirkin, C. A. Angew. Chem. Int. Ed. 2001, 40, 2022.
12. Caulder, D. L.; Raymond, K. N. Acc. Chem. Res. 1999, 32, 975.
13. (a) Stricklen, P. M.; Volcko, E. J.; Verkade, J. G. J. Am. Chem. Soc. 1983, 105, 2494. (b) Fujita, M.; Ogura, K. Coord. Chem. Rev. 1996, 148, 249. (c) Leininger, S.; Olenyuk, B.; Stang, P. J. Chem. Rev. 2000, 100, 853.
14. Gianneschi, N. C.; Masar III, M. S.; Mirkin, C. A. Acc. Chem. Res. 2005, 38, 825.
15. Lehn, J.-M. Chem. Eur. J. 1999, 5, 2455.
16. Corbett. P. T.;; Leclaire, J.; Vial, L.; West, K. R.; Wietor, J.-L.; Sanders, J. K. M.; Otto, S. Chem. Rev. 2006, 106, 3652.
17. (a) Lehn, J.-M. Chem. Soc. Rev. 2007, 36, 151. (b) Lehn, J.-M. Angew. Chem. Int. Ed. 2013, 52, 2836.
18. Ladame, S. Org. Biomol. Chem. 2008, 6, 219.
19. Custelcean, R. Top. Curr. Chem. 2012, 322, 193.
20. (a) Hasenknopt, B.; Lehn, J.-M.; Kneisel, B. O.; Baum, G.; Fenske, D. Angew. Chem. Int. Ed. Engl. 1996, 35, 1838. (b) Hasenknopt, B.; Lehn, J.-M.; Boumediene, N.; Dupont-Gervais, A.; Dorsselaer, A. V.; Kneisel, B.; Fenske, D. J. Am. Chem. Soc. 1997, 119, 10956.
21. Campos-Fernandez, C. S.; Schottel, B. L.; Chifotides, H. T.; Bera, J. K.; Basca, J.; Koomen, J. M.; Russell, D. H.; Dunbar, K. R. J. Am. Chem. Soc. 2005, 127, 12909.
22. (a) Crook, G. R.; Johnson, B. F. G.; Williams, I. G.; Gamlen, G. J. Chem. Soc. A, 1969, 2761. (b) Spohn, M.; Vogt, T.; Strähle, J. Z. Naturforsch, 1986, B41, 1373.
23. Shiu, K.-B.; Peng, S.-M.; Cheng, M.-C. J. Organomet. Chem. 1993, 452, 143.
24. Shiu, K.-B.; Lee, H.-C.; Lee, G.-H.; Wang, Y. Organometallics, 2002, 21, 4013.
25. Shiu, K.-B.; Lee, H.-C.; Lee, G.-H.; Ko, B.-T.; Wang, Y.; Lin, C.-C. Angew. Chem. Int. Ed. Engl. 2003, 42, 2999.
26. Shiu, K.-B.; Lee, H.-C.; Lee, G.-H. Cryst. Growth Des. 2010, 10, 2083.
27. Wang, C.-T.; Shiu, L.-C. ; K.-B. Shiu, Chem. Eur. J. 2015, 21, 7026.
28. Diez, J.; Gamasa, M. P.; Gimeno, J.; Tiripicchio, A.; Camellini, M. T. J. Chem. Soc. Dalton Trans. 1987, 1275.
29. Diez, J.; Gamasa, P.; Gimeno, J.; Lanfranchi, M.; Tiripicchio, A. J. Chem. Soc. Dalton Trans. 1990, 1027.
30. Harvey, P. D.; Drouin, H.; Zhang, T. Inorg. Chem. 1997, 36, 4998.
31. Shiu, K.-B.; Liu, S.-A.; Lee, G.-H. Inorg. Chem. 2010, 49, 9902.
32. Chuang, Jen-Han, Master Thesis, National Cheng Kung University, July 2012.
33. Liu, Shih-An, Ph. D. Thesis, National Cheng Kung University, July 2011.
34. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.;
Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, 2013.
35. Sheldrick, G. M. SHELXTL-97, University of Göttingen, Göttingen, Germany.
36. Bondi, A. J. Phys. Chem. 1964, 68, 441.
37. Jiang, K.; Zhao, D.; Guo, L.-B.; Zhang, C.-J.; Yang, R.-N. Chin. J. Chem. 2004, 22, 1297.
38. Guo, L.-B.; Zhao, D.; Zheng, X.; Zhang, X.; Yang, R. Russ. J. Inorg. Chem. 2005, 50, 1681.
39. Bondi, A. J. Phys. Chem. 1964, 68, 441.
40. Steed, J. W.; Atwood, J. L. Supramolecular Chemistry, Wiley, New York, NY, 2000, p. 23.


References for chapter 2
1. Binkerd, E. F.; Kolari, O. E. Food Cosmet. Toxicol. 1975, 13, 661.
2. Pearson, A. M.; Gillett, T. A. (Eds.) Processed Meats, third ed., Chapman & Hall, New York, NY, 1996.
3. Sincelar, J. J.; Milkowski, A. L. Nitric Oxide, 2012, 26, 259.
4. http://msds.chem.ox.ac.uk/SO/sodium_nitrite.html.
5. https://en.wikipedia.org/wiki/Sodium_nitrite.
6. Hord, N. G.; Tang, Y.; Bryan, N. S. Am. J. Clin. Nutr. 2009, 90, 1.
7. Hunault, C. C.; van Velzena, A. G.; Sips, A.; Schothorst, R. C.; Meulenbelt, J. Toxidcol. Lett. 2009, 190, 48.
8. Bryan, N. S.; Calvert, J. W.; Elmod, J. W.; Gundewar, S.; Ji, S. Y.; Lefer, D. J.; Proc. Natl. Acad. Sci. USA, 2007, 104, 19144.
9. Maia, L. B.; Moura, J. G. Chem. Rev. 2014, 114, 5273.
10. Hichman, M. A,; Rowbottom, G. L. Coord. Chem. Rev. 1982, 42, 55.
11. Nakamoto, K. Ed. Infrared and Raman Spectra of Inorganic and Coordination Compounds, fourth ed., John Wiley & Sons, 1986.
12. (a) Basolo, F.; Hammaker, G. S. Inorg. Chem. 1962, 1, 1. (b) Jackson, E. G.; Lawrance, G. A.; Lay, P. A.; Sargeson, A. M. Inorg. Chem. 1980, 19, 904. (c) Adell, B. Z. Anorg.
Allgeem. Chem. 1955, 279, 219.
13. Booth, G.; Chatt, J. J. Chem. Soc. 1962, 2099.
14. Shiu, K.-B.; Chang, C.-J. J. Organomet. Chem. 1990, 395, C47.
15. Johnson, B. F. G.; Sieker, A.; Blake, A. J.; Winpenny, R. E. P. J. Organomet. Chem. 1994, 475, 193.
16. Shiu, K.-B.; Yang, L.-T.; Wei, S.-W.; Li, C.-H.; Wu, R.-R.; Wang, J.-C.; Liou, L.-S.; Chiang, M. Y. Inorg. Chem. 1996, 35, 7845.
17. Fairlamb, I. J. S. Angew. Chem. Int. Ed. 2015, 54, 10415.
18. Tamura, M.; Yasui, T. Chem. Commun. 1968, 1209.
19. (a) Kuznetsova, N. I.; Danilyuk, A. F.; Likholobov, V. A.; Yermakov, Y. I. React. Kinet. Catal. Lett. 1979, 12, 235. (b) Kuznetsova, N. I.; Likholobov, V. A.; Fedotov, M. A.; Yerrnakov, Y. I. J. Chem. Soc. Chem. Commun. 1982, 973.
20. Shiu, K.-B.; Chang, C.-J. J. Organomet. Chem. 1990, 395, C47.
21. Caulton, K. G. Coord. Chem. Rev. 1975, 14, 317.
22. Shiu, K.-B.; Li, C.-H.; Chan, T.-J.; Peng, S.-M.; Cheng, M.-C.; Wang, S.-L; Liao, F.-L.; Chiang, M. Y. Organometallics, 1995, 14, 524.
23. Shiu, K.-B.; Young, S.-S.; Chen, S.-I; Chen, J.-Y.; Wang, H.-J.; Wang, S.-L.; Liao, F.-L.; Peng, S.-M.; Liu, Y.-H. Organometallics, 1999, 18, 4244.
24. Gordon, A. J.; Ford, R. A. (Eds.), The Chemist’s Companion, 4th ed.; Wiley: New
York, 1972.
25. Sherlock, S. J.; Cowie, M.; Singleton, E.; Steyn, M. M. d. V. Organometallics, 1988, 7, 1663.
26. Lee, Chun-Yi, Mater Thesis, National Cheng Kung University, January 2017.
27. (a) Sheldrick, G. M. SHELXL-97, University of Göttingen, Göttingen, Germany. (b) Sheldrick, G. M. Acta Cryst. 2015, C71, 3.
28. Richter-Addo, G. B.; Legzdins, P. Metal Nitrosyls, Oxford, New York, 1992, p. 64.
29. https://en.wikipedia.org/wiki/Metal_carbonyl.
30. Steed, J. W.; Atwood, J. L. Supramolecular Chemistry, Wiley, New York, 2000, p. 23.
31. Crabtree, R. H. The Organometallic Chemistry of The Transition Metals, 6th ed., Wiley, New York, 2014, p. 40.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-07-04起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-07-04起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw