進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2102202001374600
論文名稱(中文) 以多自由度仿生撲翼機構分析雀類腕關節折曲運動於懸停飛行之氣動力效應
論文名稱(英文) Aerodynamic Effect of Wrist Folding on Passerines in Hovering Flight with a Multi-articulated Flapping-wing Robot
校院名稱 成功大學
系所名稱(中) 航空太空工程學系
系所名稱(英) Department of Aeronautics & Astronautics
學年度 108
學期 2
出版年 109
研究生(中文) 陳威瀚
研究生(英文) Wei-Han Chen
學號 P46054341
學位類別 碩士
語文別 英文
論文頁數 103頁
口試委員 口試委員-尤芳忞
口試委員-苗君易
口試委員-鍾光民
指導教授-葉思沂
中文關鍵字 拍撲翼  懸停飛行  翅膀折曲  力量測  粒子影像測速法  翼前緣渦流  尾流捕捉 
英文關鍵字 flapping wing  hovering flight  wing folding  force measurement  PIV  leading-edge vortex  wake capture 
學科別分類
中文摘要   本研究根據小型雀類尺寸、外型及飛行模式設計並製作一拍撲實驗機構,其單翅擁有五個可控自由度並能仿照雀類之懸停飛行之運動以進行升力量測與流場可視化實驗。近年,開始有研究學者投入大量心力以昆蟲或簡化的鳥類模型分析探討拍撲飛行之空氣動力學機制及效應。然而,由於鳥類在飛行時的翅膀運動學較為複雜,因此這類多自由度之空氣動力學機制仍然有待深入研究。本研究根據雀類懸停飛行之運動學軌跡衍伸出兩種運動模式進行觀察與實驗,其中一種之運動軌跡與真實雀類相似,另一種則將翅膀上拍時的折曲幅度縮小為二分之一,探討雀類腕關節折曲運動於懸停飛行之氣動力效應。實驗中首先利用直接線性轉換(DLT)進行運動學分析,驗證本研究之拍撲機構能確實重現此兩種運動模式後,接續進行升力量測及流場可視化實驗。本研究根據力平衡儀量測之結果,將一個拍撲週期分為四階段並可由運動學觀察以及流場可視化之結果詳加說明。實驗結果指出,折曲幅度較小之運動模式雖然會於上拍時產生極大之負升力,但同時也會誘發下拍初期的「尾流捕捉」效應,使其在下拍初期便產生極大升力。也因此,其整體升力反而較另一模式略大一些。然而,單純擁有較大之升力並不代表該運動模式會是對飛行之表現及效率有益的。未來若能再針對像是水平力或者是功耗進行量測實驗,將有可能更利於深入了解這些運動模式在鳥類飛行上之效益。
英文摘要   In this study, a novel multiarticulate flapping-wing robot with five degrees of freedom on each wing was designed and fabricated to replicate hovering motion of passerines for force measurement and PIV experiments. Recent years, several researchers have focused on exploring the aerodynamic characteristics of insects and also some simplified model of birds. However, birds, like passerines, perform much more complicated wing kinematics which are rarely tested. The detailed aerodynamic effect of wings with higher degrees of freedom still remains to be further investigated. Two modified wing trajectories from previous observed wing kinematics of passerines were experimented in this research to investigate the aerodynamic differences, one with a larger folding amplitude, similar to that of real passerines, and one with only half the amplitude. Kinematics of the robot was verified utilizing direct linear transformation (DLT) which confirmed that the wing trajectories had high correlation with the desired motion. According to the lift force measurements, 4 phases of the wingbeat cycle were characterized and elaborated through camera images and flow visualization results. We found that although less folding caused higher negative lift during upstrokes, it also induced greater lift at the initial downstroke through ‘wake capture’ which ended up producing higher cycle-averaged lift. However, this does not imply that less folding benefits flight performance. Further investigation such as the horizontal force or power requirement could be a helping hand to more thoroughly understand the pros and cons of folding on passerines during hovering flight.
論文目次 摘要 ...................................................i
ABSTRACT .............................................iii
誌謝 ...................................................v
CONTENTS ..............................................vi
LIST OF TABLES ........................................ix
LIST OF FIGURES ........................................x
NOMENCLATURE .........................................xiv

CHAPTER I INTRODUCTION ................................1
1.1 Background and Motivation .........................1
1.2 Flapping Wing Micro Aerial Vehicles ...............3
1.2.1 MicroBat .......................................3
1.2.2 Nano Hummingbird ...............................4
1.2.3 DelFly .........................................5
1.3 Flapping Wing Aerodynamics ........................6
1.3.1 Delayed Stall ..................................6
1.3.2 Added Mass .....................................7
1.3.3 Rotational Circulation .........................8
1.3.4 Clap and Fling .................................9
1.3.5 Wake Capture ..................................10
1.4 Related Research on Wing Kinematics ..............11
1.5 Objective ........................................13

CHAPTER II Design of Flapping-wing Robot .............14
2.1 Flow Similarity and Dimensional Analysis .........14
2.1.1 Flow Similarity ...............................14
2.1.2 Buckingham Pi Theorem & Dimensionless Parameters .......................................................15
2.2 Mechanical Design of Robot .......................19
2.2.1 Initial Sizing ................................19
2.2.2 Mechanism Linkage .............................21
2.3 Electronic and Control System ....................25
2.3.1 Motor & Driver ................................25
2.3.2 Controller Board ..............................27
2.4 Completed Flapping-wing Robot ....................29
2.4.1 Robot Assembly ................................29
2.4.2 Flapping Mechanism ............................30
2.4.3 Control Algorithm .............................31
2.5 Mathematical Representation of Kinematics ........32
2.5.1 Denavit-Hartenberg Convention .................32
2.5.2 Kinematics of the Bevel-gear Train ............35

CHAPTER III Wing Trajectory and Kinematic Analysis ...37
3.1 Reference Kinematics .............................37
3.1.1 Previously Observed Wing Kinematics ...........37
3.1.2 Solving for the Mechanical Kinematic Angles ...40
3.2 Kinematic Analysis ...............................47
3.2.1 Objective .....................................47
3.2.2 Experimental Method ...........................47
3.2.3 Camera Positioning ............................50
3.2.4 Feature Point Tracking ........................54
3.2.5 Kinematic Verification Results ................56

CHAPTER IV Force Measurement and Flow Visualization ..67
4.1 Force Measurement System .........................67
4.1.1 Construction of the Force Measurement System ..67
4.1.2 Uncertainty and Calibration of the Force Measurement System ....................................70
4.2 Flow Visualization System ........................73
4.2.1 High-speed Camera .............................73
4.2.2 Laser and Optics ..............................73
4.2.3 Experimental Setup ............................74
4.2.4 Image Processing Tool .........................75
4.3 Results and Discussion ...........................76
4.3.1 Force Measurement and Wingbeat Phase Characterization ......................................76
4.3.2 Phase 1 – Pre-downstroke ......................79
4.3.3 Phase 2 – Downstroke ..........................85
4.3.4 Phase 3 – Folding Upstroke ....................87
4.3.5 Phase 4 – None-lifting Upstroke ...............90
4.3.6 Comparisons ...................................92

CHAPTER V Conclusion .................................96
5.1 Concluding Remarks ...............................96
5.2 Perspectives .....................................99

REFERENCES ...........................................100

參考文獻 [1]D. A. Reay, The History of Man-Powered Flight. Elsevier Science, 2014.
[2]T. A. Ward, C. J. Fearday, E. Salami, and N. Binti Soin, "A bibliometric review of progress in micro air vehicle research," International Journal of Micro Air Vehicles, vol. 9, no. 2, pp. 146-165, 2017.
[3]R. J. Wood et al., "An autonomous palm-sized gliding micro air vehicle," IEEE Robotics & Automation Magazine, vol. 14, no. 2, pp. 82-91, 2007.
[4]F. Bohorquez, P. Samuel, J. Sirohi, D. Pines, L. Rudd, and R. Perel, "Design, analysis and hover performance of a rotary wing micro air vehicle," Journal of the American Helicopter Society, vol. 48, no. 2, pp. 80-90, 2003.
[5]S. Deng, M. Percin, and B. van Oudheusden, "Experimental investigation of aerodynamics of flapping-wing micro-air-vehicle by force and flow-field measurements," AIAA Journal, vol. 54, no. 2, pp. 588-602, 2015.
[6]T. N. Pornsin-Sirirak, Y.-C. Tai, C.-M. Ho, and M. Keennon, "Microbat: A palm-sized electrically powered ornithopter," in Proceedings of NASA/JPL Workshop on Biomorphic Robotics, 2001, pp. 14-17.
[7]MicroBat. Available: http://touch.caltech.edu/research/bat/bat.htm
[8]M. Keennon, K. Klingebiel, and H. Won, "Development of the nano hummingbird: A tailless flapping wing micro air vehicle," in 50th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, 2012, p. 588.
[9]M. Percin, Y. Hu, B. Van Oudheusden, B. Remes, and F. Scarano, "Wing flexibility effects in clap-and-fling," International Journal of Micro Air Vehicles, vol. 3, no. 4, pp. 217-227, 2011.
[10]M. P. G.C.H.E. de Croon, B.D.W. Remes, R. Ruijsink, Christophe De Wagter, The DelFly - Design, Aerodynamics, and Artificial Intelligence of a Flapping Wing Robot. Springer Netherlands, 2016.
[11]D. D. Chin and D. Lentink, "Flapping wing aerodynamics: from insects to vertebrates," Journal of Experimental Biology, vol. 219, no. 7, pp. 920-932, 2016.
[12]C. P. Ellington, C. Van Den Berg, A. P. Willmott, and A. L. Thomas, "Leading-edge vortices in insect flight," Nature, vol. 384, no. 6610, p. 626, 1996.
[13]D. Lentink and M. H. Dickinson, "Rotational accelerations stabilize leading edge vortices on revolving fly wings," Journal of Experimental Biology, vol. 212, no. 16, pp. 2705-2719, 2009.
[14]S. P. Sane, "The aerodynamics of insect flight," Journal of Experimental Biology vol. 206, no. 23, pp. 4191-4208, 2003.
[15]S. P. Sane and M. H. Dickinson, "The control of flight force by a flapping wing: lift and drag production," Journal of Experimental Biology, vol. 204, no. 15, pp. 2607-2626, 2001.
[16]V. M. Kramer, "Die zunahme des maximalauftriebes von tragflugeln bei plotzlicher anstellwinkelvergrosserung (boeneffekt)," Z. Flugtech. Motorluftschiff, vol. 23, pp. 185-189, 1932.
[17]M. M. Munk, "Note on the air forces on a wing caused by pitching," NACA Report, 1925.
[18]T. Theodorsen, "General theory of aerodynamic instability and the mechanism of flutter," NACA Report, 1949.
[19]S. P. Sane and M. H. Dickinson, "The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight," Journal of Experimental Biology, vol. 205, no. 8, pp. 1087-1096, 2002.
[20]Y.-H. Chang, S.-C. Ting, J.-Y. Su, C.-Y. Soong, and J.-T. Yang, "Ventral-clap modes of hovering passerines," Physical Review E, vol. 87, no. 2, p. 022707, 2013.
[21]R. Srygley and A. Thomas, "Unconventional lift-generating mechanisms in free-flying butterflies," Nature, vol. 420, no. 6916, p. 660, 2002.
[22]B. K. van Oorschot, E. A. Mistick, and B. W. Tobalske, "Aerodynamic consequences of wing morphing during emulated take-off and gliding in birds," Journal of Experimental Biology, vol. 219, no. 19, pp. 3146-3154, 2016.
[23]I. G. Ros, M. A. Badger, A. N. Pierson, L. C. Bassman, and A. A. Biewener, "Pigeons produce aerodynamic torques through changes in wing trajectory during low speed aerial turns," The Journal of Experimental Biology, vol. 218, no. 3, pp. 480-490, 2015.
[24]B. F. Feshalami, M. Djavareshkian, M. Yousefi, A. Zaree, and A. Mehraban, "Experimental investigation of flapping mechanism of the black-headed gull in forward flight," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, p. 0954410018819292, 2018.
[25]Y.-H. Chang, S.-C. Ting, C.-C. Liu, J.-T. Yang, and C.-Y. J. E. i. F. Soong, "An unconventional mechanism of lift production during the downstroke in a hovering bird (Zosterops japonicus)," Experiments in Fluids, journal article vol. 51, no. 5, pp. 1231-1243, November 01 2011.
[26]W. Shyy, Y. Lian, J. Tang, D. Viieru, and H. Liu, Aerodynamics of low Reynolds number flyers. Cambridge University Press, 2007.
[27]J. G. Leishman, Principles of Helicopter Aerodynamics. Cambridge University Press, 2002.
[28]W. Shyy, H. Aono, C.-k. Kang, and H. Liu, An introduction to flapping wing aerodynamics. Cambridge University Press, 2013.
[29]T. Van Truong, D. Byun, M. J. Kim, K. J. Yoon, and H. C. Park, "Aerodynamic forces and flow structures of the leading edge vortex on a flapping wing considering ground effect," Bioinspiration & biomimetics, vol. 8, no. 3, p. 036007, 2013.
[30]L. Y. Jen, "Aerodynamics of Three-Dimensional Flapping Wing," Doctor of Philosophy, National University of Singapore, 2017.
[31]Y. Lu and G. X. Shen, "Three-dimensional flow structures and evolution of the leading-edge vortices on a flapping wing," Journal of Experimental Biology, vol. 211, no. 8, pp. 1221-1230, 2008.
[32]J.-s. Han, J. W. Chang, J.-k. Kim, and J.-h. Han, "Role of trailing-edge vortices on the hawkmothlike flapping wing," Journal of Aircraft, vol. 52, no. 4, pp. 1256-1266, 2015.
[33]S. Dhawan, "Bird flight, Sadhara," in Academy Proceedings in Engineering Sciences, 1991, vol. 16, pp. 275-352.
[34]T. MUTLU, "Development and Testing of a 3 DOF Tandem Flapping wing Mechanism," The Graduate School of Natural and Applied Sciences, MIDDLE EAST TECHNICAL UNIVERSITY, 2014.
[35]J. W. Bahlman, S. M. Swartz, and K. S. Breuer, "Design and characterization of a multi-articulated robotic bat wing," Bioinspiration & Biomimetics, vol. 8, no. 1, p. 016009, 2013.
[36]R. S. Hartenberg and J. Denavit, "A kinematic notation for lower pair mechanisms based on matrices," Journal of Applied Mechanics, vol. 77, no. 2, pp. 215-221, 1955.
[37]M. Uyguroğlu and H. Demirel, "Kinematic analysis of bevel-gear trains using graphs," Acta Mechanica, vol. 177, no. 1-4, pp. 19-27, 2005.
[38]章聿珩, "運動學參數對鳥類拍撲翼之升力影響," 機械工程學研究所, 臺灣大學, 2010年, 2010.
[39]Y. Abdel-Aziz, H. Karara, and M. Hauck, "Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry," Photogrammetric Engineering & Remote Sensing, vol. 81, no. 2, pp. 103-107, 2015.
[40]N. M. Alem, J. W. Melvin, and G. L. Holstein, "Biomechanics applications of direct linear transformation in close-range photogrammetry," in Proceedings of the Sixth New England Bioengineering Conference, 1978, pp. 202-206: Elsevier.
[41]R. B. George, "Design and Analysis of a Flapping Wing mechanism for Optimization," Department of Mechanical Engineering, Brigham Young University, 2011.
[42]W. Thielicke and E. Stamhuis, "PIVlab–towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB," Journal of Open Research Software, vol. 2, no. 1, 2014.
[43]U. M. Norberg, Vertebrate flight: mechanics, physiology, morphology, ecology and evolution. Springer Science & Business Media, 2012.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-03-06起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-03-06起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw