進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2101202019034400
論文名稱(中文) 光點陣列斜掃描曝光的量測與誤差校正
論文名稱(英文) Measurement and Calibration for Point Array Oblique Scanning Ultraviolet Exposure
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 108
學期 1
出版年 109
研究生(中文) 邱奕憲
研究生(英文) Yi-Hsien Chiu
學號 N16051647
學位類別 碩士
語文別 中文
論文頁數 110頁
口試委員 指導教授-李永春
口試委員-劉建聖
口試委員-鍾俊輝
中文關鍵字 數位影像  無光罩微影  畸變補償  數位微鏡面裝置 
英文關鍵字 digital image  Maskless lithography  distortion calibration  DMD 
學科別分類
中文摘要 本研究之主題是以光點陣列斜掃描為基礎之無光罩式紫外 (UV)光曝光技術,針對其曝光圖形因光學成像鏡頭之畸變與像差所造成之誤差與缺陷,建立一光學檢測及校正流程,藉由高解析度影像感測器及高精度之運動平台量測光點陣列的真實座標,再修正曝光圖形拆解演算法中正規光點格點位置與調整斜掃描角度,進行曝光圖形的補正,並以實驗方式驗證本校正流程之可行性。
本論文之無光罩式UV微影系統採用波長 405 nm 之紫外光光源,紫外光先經過數位微鏡面裝置 (Digital Micro-mirror Device, DMD) 的開關調控與反射,所反射之紫外光經過第一鏡組後成像於微透鏡陣列的表面,微透鏡陣列再聚光於一個作為空間濾波器的微孔洞陣列,以消除其雜散光,最後再將孔洞陣列的紫外光經由第二鏡組成像於試片的光阻層,進行光點陣列斜掃描的UV曝光。經由實驗發覺,此系統之光學成像鏡頭於14x10.6 mm2 成像範圍內的畸變像差約為0.3 %,週期性缺陷最大約為 30 μm,藉由本研究提出的光點陣列檢測及校正流程,可將週期性缺陷抑制至2 μm 內,並且成功實現最小線寬 10 μm 之任意圖形的無光罩式黃光微影製程。
英文摘要 In this study, an optical measurement and calibration process is established to resolve the errors and defects caused by optical distortion of image projection lenses in an ultraviolet (UV) maskless lithography system. This UV maskless lithography system is based on digital-micromirror-device (DMD) and oblique scanning of an UV point array. Using a high-resolution image sensor and a high precision x-y-z motorized stage, the coordinates of UV spots are accurately measured. The measured point array is then characterized with an optical distortion model and used for correcting the algorithm in preparing DMD images for UV exposure.
The UV light in this maskless lithography system has a wavelength of 405 nm. The UV light is modulated and reflected by the DMD, and then projected by the first imaging lens. The projected UV light is collected by arrayed microlens and focused into arrayed pinholes, which acts as a spatial filter array. Finally, the UV illuminated pinhole array is projected by the second image lens onto a photoresist layer for UV patterning based on obliquely scanning of the projected UV spots.
The experimental results show that the distortion of the optical imaging lens used in this study is about 0.3 % in the projection range of 14.08 x10.56 mm^2, and the max periodic defect is about 30 μm. The point array detection and calibration process proposed by this study can reduce the periodic defect down to 2 μm, and successfully realize arbitrary UV patterning with a minimum linewidth/spacing of 10 μm.
論文目次 摘要 ii
Abstract iv
致謝 xii
圖目錄 xv
表目錄 xxii
第一章 導論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 本文架構 7
第二章 光點陣列式任意斜率斜掃描架構 8
2.1 光點陣列式任意斜率斜掃描原理與程式設計 9
2.2 無光罩微影系統硬體架構 14
2.2.1 硬體系統架構 15
2.2.2 光學系統架構 16
2.2.3 三軸運動平台 26
2.3 光點陣列式斜掃描曝光模擬 29
第三章 光學系統與曝光校正 43
3.1 光點量測方式與成像變數 44
3.1.1 數位影像量測 44
3.1.2 成像鏡頭畸變模型的量測與計算 56
3.2 MLSFA所對應DMD校正 69
3.3 缺陷與分析 71
3.4 修正光點間距非一致的方法 77
3.5 能量不均造成之缺陷 90
第四章 曝光實驗 92
4.1 Line Pair曝光實驗 92
4.2 任意曝光圖形 98
4.3 導光板曝光實驗 103
第五章 結論與未來展望 106
5.1 結論 106
5.2 未來展望 107
參考文獻 109

參考文獻 [1] H. Kueck, M. Bollerott, W. Doleschal, A. Gehner, W. Grundke, D. Kunze, R. Melcher, J. Paufler, R. Seltmann and G. Zimmer, “New system for fast submicron laser direct writing,” Proc. SPIE, 2440, pp. 506-514, 1995.
[2] R. Seltmann, W. Doleschal, A. Gehner, H. Kuck, R. Melcher, J. Paufler and G. Zimmer, “New system for fast submicron optical direct writing,” Microelectron. Eng. 30(1-4), pp. 123–127, 1996.
[3] K. Takahashi and J. Setoyama, “An UV-exposure system using DMD,” J. Inst. Electron., Inf. Commun. Eng. J82-C-II(3), pp. 92–94, 1999.
[4] P. F. Van Kessel, L. J. Hornbeck, R. E. Meier and M. R. Douglass, “A MEMS-based Projection Display,” Proceedings of the IEEE, 86(8), 1998.
[5] D. Dudley, W. M. Duncan and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE, 4985, pp. 14-25, 2003.
[6] K. F. Chan, Z. Feng, R. Yang, A. Ishikawa and W. Mei, “High-resolution maskless lithography,” J. Microlithogr. Microfabr. Microsyst., 2(4), pp. 331-339, 2003.
[7] M. Seo and H. Kim, “Lithography upon micromirrors,” Computer-Aided Design, 39(3), pp. 202-217, 2007.
[8] D. H. Dinh, H. L. Chien and Y. C. Lee, “Maskless lithography based on digital micromirror device (DMD) and double sided microlens and spatial filter array,” Optics and Laser Technology, 113, pp.407-415, 2019.
[9] D. H. Lee, “Optical system with 4 μm resolution for maskless lithography using digital micromirror device,” Journal of the Optical Society of Korea, 14(3), pp. 266–276, 2010.
[10] H. Ryoo, D. W. Kang and J. W. Hahn, “Analysis of the line pattern width and exposure efficiency in maskless lithography using a digital micromirror device,” Microelectron. Eng., 88(10), pp. 3145–3149, 2011.
[11] J. Y. Hur and M. S. Seo, “Optical proximity corrections for digital micromirror device-based maskless lithography,” Journal of the Optical Society of Korea, 16(3), pp. 221-227, 2012.
[12] D. W. Kang, M. Kang and J. W. Hahn, “Accurate position measurement of a high-density beam spot array in digital maskless lithography,” Applied Optics, 52(23), pp. 5862-5868, 2013.
[13] Q. K. Li,Y. Xiao,H. Liu,H. L. Zhang, J. Xu and J. H. Li, “Analysis and correction of the distortion error in a DMD based scanning lithography system,” Optics Communications, 434, pp. 1-6, 2019.
[14] S. Huang, M. Li, L. Wang, Y. Su and Y. Liang, “Precise fabrication of large-area microstructures by digital oblique scanning lithography strategy and stage self-calibration technique,” Applied Physics Express, 12(9) 096501, 2019.
[15] D. Brown, “Close range camera calibration,” Photogrammetric Engineering, 37(8), pp. 855–855, 1971.
[16] J. Weng, P. Cohen, M. Herniou, “Camera calibration with distortion models and accuracy evaluation”, IEEE Trans. Pattern Anal. Mach. Intell., 14(10), pp.965-980, 1992.
[17] 楊聰偉, “光點陣列斜掃描與二維及三維無光罩微影技術,” 成功大學機械工程學系學位論文, pp. 1-112, 2018.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-12-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw