進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2101201722354900
論文名稱(中文) 測量老人使用戶外運動健身器材之身體活動量
論文名稱(英文) Measure the Energy Expenditure When Seniors Using Outdoor Fitness Equipment
校院名稱 成功大學
系所名稱(中) 體育健康與休閒研究所
系所名稱(英) Institute of Physical Education, Health & Leisure Studies
學年度 105
學期 1
出版年 106
研究生(中文) 何家驊
研究生(英文) Chia-Hua Ho
學號 RB6031139
學位類別 碩士
語文別 英文
論文頁數 40頁
口試委員 指導教授-周學雯
口試委員-王振興
召集委員-黃滄海
中文關鍵字 iNCKU smart watch  身體活動量  戶外健身區 
英文關鍵字 iNCKU smart watch  Physical activity  Outdoor gym 
學科別分類
中文摘要 背景:近年來,在鄰里公園中建造了許多戶外運動健身器材,這些器材能提供高齡者新的運動選擇。然而這些戶外運動健身器材卻和室內用的運動健身器材並不完全相同,其最大的不同點在於缺乏阻力以及運動強度的設定,因此,高齡者在使用這些戶外運動健身器材時的身體活動量以及運動強度是一個未知的問題。另一方面,穿戴式的活動量量測裝置是一種簡易工具,能夠提供運動人士即時的能量消耗數據,在本研究中也使用此種裝置量測,並比較其能量消耗結果的差異。
目的:一、測量老人使用戶外運動健身器材之身體活動量。二、檢驗穿戴式活動量量測裝置(iNCKU smart watch)及能量代謝系統(K4b2)量測之能量消耗是否有差異。
方法:本研究招募六十五歲以上的高齡者參與。當受試者在操作戶外運動健身器材的同時,配戴於左手的穿戴式裝置(iNCKU smart watch)、配戴於胸前的能量代謝系統(K4b2)及配戴於胸口心跳帶會記錄受試者運動時的生理狀態。受試者會按照運動處方籤所設定的動作以隨機順序操作四種戶外運動健身器材,並且在操作前給予練習確保動作一致。每個項目之間都會給予受試者休息直到恢復。數據處理部分,使用Matlab讀取K4b2的量測數據,並擷取運動的第100~160秒之間的穩定狀態用於分析。iNCKU smart watch的資料由研究人員直接照手錶顯示之數值記錄於實驗記錄單。使用單因子變異數分析來進行iNCKU smart watch及K4b2所量測的能量消耗數據是否有差異。
結果:十六位受試者平均年齡為70.69±5.59歲,包含八位男性以及八位女性高齡者都完成所有的實驗項目。本研究量測出在頻率每分鐘80次、每分鐘100次及每分鐘120次時操作漫步機的能消耗為50.78±14.76卡/公斤/分、59.62±14.23卡/公斤/分以及 65.62±18.27卡/公斤/分;在頻率每分鐘80次、100次及每分鐘120次時操作滑雪機的能量消耗為54.00±14.31卡/公斤/分、68.87±22.74卡/公斤/分以及74.55±23.39卡/公斤/分;使用轉腰器的能量消耗則是38.43±20.16卡/公斤/分,而使用雙手伸拉器的能量消耗為31.05±12.58卡/公斤/分。在走路測試的部分,走路時速3.2公里的能量消耗為58.53±19.29 卡/公斤/分,而走路時速4.0公里的能量消耗是60.90±20.69卡/公斤/分。代謝當量的數值部分,在頻率每分鐘80次、每分鐘100次及每分鐘120次操作漫步機時的代謝當量為2.81±0.85、3.26±0.82以及3.55±1.02;在頻率每分鐘80次、每分鐘100次及每分鐘120次操作滑雪機時的代謝當量為3.02±0.87, 3.82±1.35及4.05±1.35.54;轉腰器的代謝當量則是2.05±1.15;雙手伸拉器的代謝當量為1.63±0.70。在走路測驗的部分,走路時速3.2公里的代謝當量為3.23±1.04,而走路時速4.0公里的代謝當是量3.36±1.14。從單因子變異數的結果來看,iNCKU smart watch及K4b2在能量消耗的比較中有顯著的差異。
結論:本研究量測出高齡者在使用戶外運動健身器材時所得到的身體活動量以及使用戶外運動健身器材時的運動強度,從結果可以知道漫步機及滑雪機是屬於中等強度的運動,而轉腰器及雙手伸拉器則是屬於輕度強度的運動,可以證實戶外運動健身器材有增加高齡者身體活動量的效果。當戶外運動健身器材的運動強度和室內運動健身器材的運動強度做比較時,可以發現本研究所測量的運動強度是較低的。能量消耗方面,使用K4b2 及iNCKU smart watch量測使用戶外運動健身器材時的能量消耗發現量測結果有顯著差異,推論是使用單一感測器的量測之限制所造成的誤差,未來的穿戴式裝置或許需使用組合式多感測器或是結合其他生理指標來減少量測的誤差。
英文摘要 Background: In recent years, there are many outdoor fitness equipment built in the park that provides the seniors a new way to doing exercise. Although these facilities are modified from many gym facilities, these facilities are without resistance and strength levels. Hence, the aim of this study is to examine energy expenditures when seniors using the outdoor fitness equipment. In addition, this study also use a wearable device to measure the energy expenditure to compare the differences.
Purpose: This study was designed for 1. Measure the energy expenditure and exercise intensity when seniors using outdoor fitness equipment in the park. 2. Examine if the data produced by a wearable device (iNCKU smart watch) and the amount of energy required are different when using outdoor fitness equipment.
Method: The subjects were above 65 years old participated in this research. They equipped iNCKU smart watch on the left hand, a metabolic system (K4b2) and polar heart rate belt on the chest to measure the energy expenditure while they are using the outdoor fitness equipment. The subjects were follow the exercise prescriptions to manipulate four kinds of outdoor fitness equipment. Subjects were practiced each equipment before the experiment started and used the equipment at a random order. A break were be given between manipulating each equipment. The K4b2 provides breath-by-breath pulmonary data which were capture by Matlab to obtain the data during the stable phase between 100~160 seconds when subject was exercising. Data from the iNCKU smart watch were recorded to an experimental record sheet. One-way ANOVA was used for analyzing the energy expenditure record from the iNCKU smart watch with that from K4b2.
Result: A total of sixteen healthy seniors (eight males and eight females) finished all protocols, the average age of the subjects is 70.69±5.59 years old. The energy expenditure for Air walker from frequency 80 Bpm, 100 Bpm and 120 Bpm are 50.78±14.76 cal/kg/min, 59.62±14.23 cal/kg/min and 65.62±18.27 cal/kg/min, for Ski machine from frequency 80 Bpm, 100 Bpm and 120 Bpm are 54.00±14.31 cal/kg/min, 68.87±22.74 cal/kg/min and 74.55±23.39 cal/kg/min, for Waist twister is 38.43±20.16 cal/kg/min, Double arm stretch is 31.05±12.58 cal/kg/min. A 3.2 kph speed of walking is 58.53±19.29 cal/kg/min and 4.0 kph speed of walking is 60.90±20.69 cal/kg/min. The METs levels for Air walker from frequency 80 Bpm, 100 Bpm and 120 Bpm are 2.81±0.85, 3.26±0.82 and 3.55±1.02, Ski machine from frequency 80 Bpm, 100 Bpm and 120 Bpm are 3.02±0.87, 3.82±1.35 and 4.05±1.35, for Waist twister is 2.05±1.15, and for Double arm stretch is 1.63±0.70. A 3.2 kph speed of walking is 3.23±1.04 and 4.0 kph speed of walking is 3.36±1.14. According to one-way ANOVA, it is significantly different between K4b2 and iNCKU smart watch in all projects when comparing the energy expenditure.
Conclusion: This study presents energy expenditure and exercise intensity when seniors using four kinds of outdoor fitness equipment in the park. The finding shows that Ski machine and Air walker are moderate-intensity exercise for 3~4 METs, while the Waist twister and the Double arm stretch are light-intensity exercise for about 1~2 METs. When comparing the intensity of outdoor fitness equipment with the similar fitness equipment, it is found that METs values are lower. This research also tries to use the iNCKU smart watch to measure the energy expenditure when seniors using outdoor fitness equipment. Unfortunately, two kinds of devices in the statistics were significantly different in all measurements. It is demonstrating that single sensor measurement has some limitations when measuring the complex motion activities. It may be necessary to rely on combined sensors which can measure different parts of physical functions or use different physiological indicators to calculate the measurement values.
論文目次 Contents

Introduction 1
1.1 Background 1
1.2 Motivation 3
1.3 Research purpose 3
1.4 Limitation 3
Literature review 4
2.1 Aging population and physical activity 4
2.2 Energy expenditure 5
2.2.1 Direct calorimetry 5
2.2.2 Indirect calorimetry 5
2.2.3 Non-calorimetric 6
2.3 Measure energy expenditure by K4b2 6
2.4 Measure energy expenditure by a sports watch of accelerometer 7
2.5 Outdoor fitness equipment 9
Method 11
3.1 Subjects 11
3.2 Research time 11
3.3 Research equipment 11
3.3.1 Instrument 11
3.3.2 Outdoor fitness equipment 12
3.4 Experiment project 15
3.5 Experiment process 15
3.6 Data analysis 16
Result 18
4.1 Subject 18
4.2 Energy expenditure and METs 22
4.3 iNCKU smart watch 28
Conclusion 31
5.1 Outdoor fitness equipment: 31
5.2 Exercise intensity 31
5.3 iNCKU smart watch 34
5.4 Future study 34
Reference 36

Table

Table 1. Research equipment 13
Table 2. Outdoor fitness equipment and operation method 14
Table 3. Descriptive statistics and t-test of study participants 18
Table 4. Behavior questionnaire result 19
Table 5. Frequency of using fitness equipment 21
Table 6. Energy expenditure and METs 24
Table 7. Paired T-test to compare walking project with other projects 27
Table 8. Energy expenditure record from iNCKU smart watch 28
Table 9. iNCKU smart watch compared with K4b2 29
Table 10. Comparison of exercise intensity in METs for walking 32
Table 11. Comparison of exercise intensity in METs for Fitness equipment 33

Figure

Figure 1. Facemask was tightly covered mouth and nose 12
Figure 2. The graphs depict whole data form Ski machine 120 Bpm (first subject) 17
Figure 3. METs levels 23
Figure 4.The energy expenditure for iNCKU smart watch compared with K4b2 30
參考文獻 Ainsworth, B. E., Haskell, W. L., Herrmann, S. D., Meckes, N., Bassett, D. R., Jr., Tudor-Locke, C., . . . Leon, A. S. (2011). 2011 Compendium of Physical Activities: a second update of codes and MET values. Medicine and Science in Sports and Exercise, 43(8), 1575-1581. doi:10.1249/MSS.0b013e31821ece12
Ainsworth, B. E., Haskell, W. L., Leon, A. S., Jacobs, D. R., Jr., Montoye, H. J., Sallis, J. F., & Paffenbarger, R. S., Jr. (1993). Compendium of physical activities: classification of energy costs of human physical activities. Medicine and Science in Sports and Exercise, 25(1), 71-80. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8292105
Ainsworth, B. E., Haskell, W. L., Whitt, M. C., Irwin, M. L., Swartz, A. M., Strath, S. J., . . . Leon, A. S. (2000). Compendium of physical activities: an update of activity codes and MET intensities. Medicine and Science in Sports and Exercise, 32(9 Suppl), S498-504. doi:10.1097/00005768-200009001-00009
Assah, F. K., Brage, S., Ekelund, U., & Wareham, N. J. (2008). The association of intensity and overall level of physical activity energy expenditure with a marker of insulin resistance. Diabetologia, 51(8), 1399-1407. doi:10.1007/s00125-008-1033-9
Bouten, C. V., Koekkoek, K. T., Verduin, M., Kodde, R., & Janssen, J. D. (1997). A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity. Ieee Transactions on Biomedical Engineering, 44(3), 136-147. doi:10.1109/10.554760
Brandes, M., Klein, H., Ginsel, S., & Heitmann, A. (2015). Comparability of three mobile respiratory gas analyzers. Sportwissenschaft. doi:10.1007/s12662-015-0368-x
Chen, Y.-P., Yang, J.-Y., Liou, S.-N., Lee, G.-Y., & Wang, J.-S. (2008). Online classifier construction algorithm for human activity detection using a tri-axial accelerometer. Applied Mathematics and Computation, 205(2), 849-860. doi:10.1016/j.amc.2008.05.099
Chow, H. W. (2013). Outdoor fitness equipment in parks: a qualitative study from older adults' perceptions. Bmc Public Health, 13. doi:Artn 1216
10.1186/1471-2458-13-1216
COSMED-Srl. (2010). K4b2 user Manual XXI Edition.
COSMED, T. M. C. (n.d.). K4b2 overview. Retrieved from http://www.bodpod.com/en/products/cardio-pulmonary-exercise-testing/k4-b2-mobile-cpet
Furber, S., Pomroy, H., Grego, S., & Tavener-Smith, K. (2014). People's experiences of using outdoor gym equipment in parks. Health Promotion Journal of Australia, 25(3), 211. doi:10.1071/HE14038
Gault, M., Clements, R., & Willems, M. (2009). Effect of wearing the Cosmed K4b2 Metabolic System on 1 mile walking performance in older adults. Journal of Human Kinetics, 21, 41-48.
Gebel, K., Ding, D., & Bauman, A. E. (2014). Volume and intensity of physical activity in a large population-based cohort of middle-aged and older Australians: prospective relationships with weight gain, and physical function. Preventive Medicine, 60, 131-133. doi:10.1016/j.ypmed.2013.12.030
Hagstromer, M., Kwak, L., Oja, P., & Sjostrom, M. (2015). A 6 year longitudinal study of accelerometer-measured physical activity and sedentary time in Swedish adults. Journal of Science and Medicine in Sport, 18(5), 553-557. doi:10.1016/j.jsams.2014.07.012
Hall, K. S., Howe, C. A., Rana, S. R., Martin, C. L., & Morey, M. C. (2013). METs and accelerometry of walking in older adults: standard versus measured energy cost. Medicine & Science in Sports & Exercise, 45(3), 574-582. doi:10.1249/MSS.0b013e318276c73c
Harrell, J. S., McMurray, R. G., Baggett, C. D., Pennell, M. L., Pearce, P. F., & Bangdiwala, S. I. (2005). Energy Costs of Physical Activities in Children and Adolescents. Medicine & Science in Sports & Exercise, 37(2), 329-336. doi:10.1249/01.mss.0000153115.33762.3f
Haskell, W. L., Lee, I. M., Pate, R. R., Powell, K. E., Blair, S. N., Franklin, B. A., . . . Bauman, A. (2007). Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Medicine & Science in Sports & Exercise, 39(8), 1423-1434. doi:10.1249/mss.0b013e3180616b27
Hendelman, D., Miller, K., Baggett, C., Debold, E., & Freedson, P. (2000). Validity of accelerometry for the assessment of moderate intensity physical activity in the field. Medicine & Science in Sports & Exercise, 32(9 Suppl), S442-449. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10993413
Howe, C. C., Matzko, R. O., Piaser, F., Pitsiladis, Y. P., & Easton, C. (2014). Stability of the K4b(2) portable metabolic analyser during rest, walking and running. Journal of Sports Sciences, 32(2), 157-163. doi:10.1080/02640414.2013.812231
Hsin Ju, C. (2011). A Study on the Elderly's Neighborhood Park Exercise Equipment Needs.
Jette, M., Sidney, K., & Blumchen, G. (1990). Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clin Cardiol, 13(8), 555-565. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2204507
Leonard, W. R. (2010). Measuring human energy expenditure and metabolic function: basic principles and methods. Journal of anthropological sciences, 88, 221-230. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20834061
Levine, J. A. (2007). Measurement of energy expenditure. Public Health Nutrition, 8(7a). doi:10.1079/phn2005800
Lin, Chang, Y.-C., Yu, J.-L., & Wang, S.-C. (2014). Validity and Reliability of Sport Watch of Tri-axial Accelerometer. Journal of Physical Education and Sport Science, 17, 49-60.
Lin, Yang, Y. T., Wang, J. S., & Yang, Y. C. (2012). A wearable sensor module with a neural-network-based activity classification algorithm for daily energy expenditure estimation. IEEE Transactions on Biomedical Circuits and Systems, 16(5), 991-998. doi:10.1109/TITB.2012.2206602
Liu, Y.-T., Fu, L.-L., & Chen , L.-Y. (2006). Tri-axial Accelerometer Attached at Different Locations during Stepping Exercise
Miller, N. E., Strath, S. J., Swartz, A. M., & Cashin, S. E. (2010). Estimating Absolute and Relative Physical Activity Intensity across Age via Accelerometry in Adults. Journal of Aging and Physical Activity, 18(2), 158-170. doi:10.1123/japa.18.2.158
Pinheiro Volp, A. C., Esteves de Oliveira, F. C., Duarte Moreira Alves, R., Esteves, E. A., & Bressan, J. (2011). Energy expenditure: components and evaluation methods. Nutricion hospitalaria, 26(3), 430-440. doi:10.1590/S0212-16112011000300002
Qing, F. b. (2006). The Condition of Path Leading to National Bodybuilding Program Activity and Its Social Effect Research. Journal of Harbin Institute of Physical Education institute.
Roylance, L. M., & Angell, J. B. (1979). A batch-fabricated silicon accelerometer. IEEE Transactions on Electron Devices, 26(12), 1911-1917. doi:10.1109/T-ED.1979.19795
Ryzhov, M., & Chow, H. W. (2015). Outdoor Fitness Equipment Usage: A Case Study of Dongning Park in Tainan City.
Scott, A., Stride, V., Neville, L., & Hua, M. (2014). Design and promotion of an outdoor gym for older adults: a collaborative project. Health Promotion Journal of Australia, 25(3), 212-214. doi:10.1071/HE14037
Shiang, T.-Y., Shih, Y., & Ho, C.-S. (2012). The Applications of Sensor Technology for Exercise and Sport Science. Physical Education Journal
45(1), 1-12. doi:10.6222/pej.4501.201203.0701
Wang, C.-m. (2007). Study on Optimal Exercise Prescription of Elder Man Using the National Fitness Route. Bulletin of Sport Science & Technology, 15(1).
WHO. (2015 ). Physical activity. Retrieved from http://www.who.int/mediacentre/factsheets/fs385/en/
Xinhua. (2008). Olympic passion turns into "exercise fervor" in China. Retrieved from http://www.china-embassy.org/eng/zt/c/t510021.htm
Yang, J.-Y., Wang, J.-S., & Chen, Y.-P. (2008). Using acceleration measurements for activity recognition: An effective learning algorithm for constructing neural classifiers. Pattern Recognition Letters, 29(16), 2213-2220. doi:10.1016/j.patrec.2008.08.002
Zhang, W., & Ding, S.-l. (2010). Old Age Community Fitness Way Exercise Method Study. Journal of Harbin Institute of Physical Education.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-01-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-01-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw