系統識別號 U0026-2101201516173600
論文名稱(中文) 發展基於超音波影像之平台以引導靜脈注射
論文名稱(英文) Development of an ultrasound image-based platform for guiding intravenous injection
校院名稱 成功大學
系所名稱(中) 資訊工程學系
系所名稱(英) Institute of Computer Science and Information Engineering
學年度 103
學期 1
出版年 104
研究生(中文) 劉子傑
研究生(英文) Zih-jie Liu
學號 P76011129
學位類別 碩士
語文別 英文
論文頁數 64頁
口試委員 口試委員-廖峻德
中文關鍵字 超音波  血管邊緣偵測  超音波引導針頭 
英文關鍵字 ultrasound  vessel edge detection  ultrasound-guided needle 
中文摘要 當進行靜脈注射或是抽血時,護理人員通常會先將患者的手臂綁上橡膠止血帶,使靜脈能立即充血膨脹到最大以找出靜脈血管位置並進行治療。但是對於少數的受試者(如:皮下脂肪過厚、血管萎縮或過小)會造成針頭無法精確的刺入。除此之外,對於針頭刺進皮膚的角度、位置以及深度並無實際的依據,目前僅能仰賴護士所累積的經驗來進行注射。因此,本研究希望結合超音波系統與影像處理建立一個超音波引導針頭血管定位系統來改善靜脈注射時所遇到的難題。在本研究中提出了一個方法來自動偵測血管最大處,一開始系統會先把讀取到的影像自動地選出ROI,針對此ROI的區域依以下步驟做處理:影像增強、濾除雜訊、二值化、影像平滑、初步邊緣篩選、決定最後血管邊緣、計算影像中血管大小。接著應用了小波軟閥值法來去除超音波影像中的假影以增加針頭在超音波影像的能見度。在估計血管大小方法的部分其結果正確率會隨著探頭頻率(或解析度)的上升而增加;而在消除假影的部分則會因為假影突顯門檻值的變化使得假影消除的影像結果有所改變,最後通過對比值的比較,我們挑選出門檻值為0.7。本研究的最大貢獻是可以提供給醫療人員立即、準確、安全及方便地找出血管中央位置。由於超音波系統在各個醫院裡面算是一套基本的配備,使得本系統只需要一個連結針頭以及超音波探頭的引導夾具和此開發軟體即可,因此是非常具有成本效益的。
英文摘要 To increase the accuracy of intravenous injection and blood sampling, medical personnel typically use a rubber band tied down the arm to make the vessel swell before inserting needle. However, the positional accuracy of inserting needle mainly depends on the experience of medical personnel. If the subject has such situations as atrophicans vasculare, small vessel, thick subcutaneous fat, etc., the position of vessel could be difficultly observed to affect the accuracy for inserting needle. Therefore, this study developed an ultrasound-guided needle system for assistive intravenous injection, which combined a needle assistive device and vessel detecting from ultrasound image during intravenous injection, to improve the injection accuracy. First, this system automatically detected the position of maximum vessel size by a series of ultrasound image processing included automatic ROI selection of image, contrast enhancement, filtering, thresholding, smoothing, initial edge extraction, edge deciding, and calculation of vascular size. Subsequently, the appropriate angle of needle insertion was calculated by trigonometric functions to assist needle inserting. In addition, the wavelet thresholding method was used to reduce the artifact from needle to enhance the recognition of needle on ultrasound image. The results showed the percentage error is depend on the frequency (or resolution) of the transducer. If use higher frequency (or resolution) of the transducer, then the percentage error can be reduced; in the part of artifact reduction, the result image will change with brightness prominent threshold value. By comparing with the contrast value, we select the value 0.7 to be the brightness prominent threshold. This study demonstrated that the ultrasound-guided needle system could immediately, accurately, safely and conveniently find the central position of vessel. Furthermore, the components of the system mainly consist of only a needle and transducer holder, and the developed software. Therefore, it tends to be cost-effective and may be applied to improve the accuracy of needle injection for resource-scarce communities.
論文目次 摘要..... I
Abstract...... II
誌謝...... IV
Table of contents..... V
List of table..... VII
List of figure...... VIII
Chapter 1. Introduction..... 1
1.1 Review articles.... 1
1.1.1 Needle visualization in ultrasound.... 2
1.1.2 Vessel edge detection.... 8
1.2 Research objective..... 8
Chapter 2. Theoretical background... 10
2.1 Fundamentals of ultrasound.... 10
2.1.1 Fundamentals of acoustic propagation.. 10
2.1.2 Reflection and refraction... 10
2.1.3 Attenuation and absorption... 13
2.2 Ultrasonic transducers..... 15
2.3 Artifacts in ultrasound image.... 18
Chapter 3. Materials and methods.... 21
3.1 Experimental arrangement.... 21
3.1.1 Vessel size tracking.... 21
3.1.2 Needle visibility enhance... 28
3.2 Phantom..... 33
3.3 Verification.... 33
3.3.1 Vessel size tracking.... 33
3.3.2 Needle visibility enhance... 34
3.4 Ultrasound imaging system... 34
3.5 Guided needle intervention positioning.... 36
Chapter 4. Results and discussion... 37
4.1 Vessel size tracking..... 37
4.1.1 Vessel size tracking results by 7.5 MHz linear array transducer.. 39
4.1.2 Vessel size tracking results by 12 MHz linear array transducer. 42
4.2 Needle insertion and needle visibility enhance... 45
4.2.1 The needle visibility enhance result by 7.5 MHz linear array transducer .. 45
4.2.2 The needle visibility enhance result by 12 MHz linear array transducer . 52
Chapter 5. Conclusions and future works... 59
5.1 Conclusions..... 59
5.2 Future works.... 60
References..... 61
參考文獻 [1] K. K. Shung, Diagnostic Ultrasound: Imaging and Blood Flow Measurements: Taylor & Francis, 2005.
[2] J. Holmes and D. Howry, "Ultrasonic diagnosis of abdominal disease," The American Journal of Digestive Diseases, vol. 8, pp. 12-32, 1963.
[3] E. Buonocore and G. J. Skipper, "Steerable real-time sonographically guided needle biopsy," American Journal of Roentgenology, vol. 136, pp. 387-392, 1981.
[4] M. Bisceglia, T. A. Matalon, and B. Silver, "The pump maneuver: an atraumatic adjunct to enhance US needle tip localization," Radiology, vol. 176, pp. 867-8, 1990.
[5] S. Bondestam and J. Kreula, "Needle tip echogenicity. A study with real time ultrasound," Investigative Radiology, vol. 24, pp. 555-60, 1989.
[6] M. J. Bradley, "An in-vitro study to understand successful free-hand ultrasound guided intervention," Clinical Radiology, vol. 56, pp. 495-8, 2001.
[7] M. H. Reid, "Real-time sonographic needle biopsy guide," American Journal of Roentgenology, vol. 140, pp. 162-163, 1983.
[8] K. J. Chin, A. Perlas, V. W. S. Chan, and R. Brull, "Needle Visualization in Ultrasound-Guided Regional Anesthesia: Challenges and Solutions," Regional Anesthesia and Pain Medicine, vol. 33, pp. 532-544, 2008.
[9] B. G. Denys, B. F. Uretsky, and P. S. Reddy, "Ultrasound-assisted cannulation of the internal jugular vein. A prospective comparison to the external landmark-guided technique," Circulation, vol. 87, pp. 1557-62, 1993.
[10] J. W. Charboneau, C. C. Reading, and T. J. Welch, "CT and sonographically guided needle biopsy: current techniques and new innovations," American Journal of Roentgenology, vol. 154, pp. 1-10, 1990.
[11] H. R. Laine and J. Rainio, "An inexpensive method of improving visualisation of the needle tip in fine needle aspiration biopsy (FNAB)," Annales chirurgiae et gynaecologiae, vol. 82, pp. 43-45, 1993.
[12] R. H. Gottlieb, W. B. Robinette, D. J. Rubens, D. F. Hartley, P. J. Fultz, and M. R. Violante, "Coating agent permits improved visualization of biopsy needles during sonography," American Journal of Roentgenology, vol. 171, pp. 1301-1302, 1998.
[13] K. Nichols, L. B. Wright, T. Spencer, and W. C. Culp, "Changes in Ultrasonographic Echogenicity and Visibility of Needles with Changes in Angles of Insonation," Journal of Vascular and Interventional Radiology, vol. 14, pp. 1553-1557, 2003.
[14] J. A. Baker, M. S. Soo, and P. Mengoni, "Sonographically guided percutaneous interventions of the breast using a steerable ultrasound beam," American Journal of Roentgenology, vol. 172, pp. 157-159, 1999.
[15] R. R. Entrekin, B. A. Porter, H. H. Sillesen, A. D. Wong, P. L. Cooperberg, and C. H. Fix, "Real-time spatial compound imaging: Application to breast, vascular, and musculoskeletal ultrasound," Seminars in Ultrasound, CT and MRI, vol. 22, pp. 50-64, 2001.
[16] S. C. Kofoed, M.-L. M. Grønholdt, J. E. Wilhjelm, J. Bismuth, and H. Sillesen, "Real-time spatial compound imaging improves reproducibility in the evaluation of atherosclerotic carotid plaques," Ultrasound in Medicine & Biology, vol. 27, pp. 1311-1317, 2001.
[17] A. Saleh, S. Ernst, A. Grust, G. Fürst, P. Dall, and U. Mödder, "Real-time compound imaging: improved visibility of puncture needles and localization wires as compared to single-line ultrasonography," RöFo : Fortschritte auf dem Gebiete der Röntgenstrahlen und der Nuklearmedizin, vol. 173, pp. 368-372, 2001.
[18] B. Zhuang, K. Dickie, and L. Pelissier, "Adaptive Spatial Compounding for Needle Visualization," in IEEE International Ultrasonics Symposium, pp. 1989-1992, 2011.
[19] J. Huang, J. K. Triedman, N. V. Vasilyev, Y. Suematsu, R. O. Cleveland, and P. E. Dupont, "Imaging artifacts of medical instruments in ultrasound-guided interventions," Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine, vol. 26, pp. 1303-1322, 2007.
[20] R. Entrekin, P. Jackson, J. R. Jago, and B. A. Porter, "Real time spatial compound imaging in breast ultrasound: technology and early clinical experience.," Medicamundi, vol. 43, pp. 35-43, 1999.
[21] J. J. Dahl, D. Guenther, and G. E. Trahey, "Adaptive imaging and spatial compounding in the presence of aberration," IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 52, pp. 1131-1144, 2005.
[22] T. Kling, K. K. Shung, and G. A. Thieme, "Reverberation reduction in ultrasonic B-mode images via dual frequency image subtraction," Medical Imaging, IEEE Transactions on, vol. 12, pp. 792-802, 1993.
[23] N. E. Bylund, M. Andersson, and H. Knutsson, "Interactive 3D filter design for ultrasound artifact reduction," in IEEE International Conference on Image Processing, pp. 728-31, 2005.
[24] P. C. Tay, S. T. Acton, and J. A. Hossack, "A wavelet thresholding method to reduce ultrasound artifacts," Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society, vol. 35, pp. 42-50, 2011.
[25] C. Da-chuan, A. Schmidt-Trucksass, C. Kuo-Sheng, M. Sandrock, P. Qin, and H. Burkhardt, "Automatic detection of the intimal and the adventitial layers of the common carotid artery wall in ultrasound B-mode images using snakes," in Image Analysis and Processing, 1999. Proceedings. International Conference on, pp. 452-457, 1999.
[26] R. C. Chan, J. Kaufhold, L. C. Hemphill, R. S. Lees, and W. C. Karl, "Anisotropic edge-preserving smoothing in carotid B-mode ultrasound for improved segmentation and intima-media thickness (IMT) measurement," in Computers in Cardiology 2000, pp. 37-40.
[27] L. Quan, I. Wendelhag, J. Wikstrand, and T. Gustavsson, "A multiscale dynamic programming procedure for boundary detection in ultrasonic artery images," IEEE Transactions on Medical Imaging, vol. 19, pp. 127-142, 2000.
[28] D. E. Ilea, P. F. Whelan, C. Brown, and A. Stanton, "An automatic 2D CAD algorithm for the segmentation of the IMT in ultrasound carotid artery images," Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, vol. 2009, pp. 515-9, 2009.
[29] D. E. Ilea, C. Duffy, L. Kavanagh, A. Stanton, and P. F. Whelan, "Fully automated segmentation and tracking of the intima media thickness in ultrasound video sequences of the common carotid artery," IEEE Trans Ultrason Ferroelectr Freq Control, vol. 60, pp. 158-77, 2013.
[30] K. K. Shung and G. A. Thieme, Ultrasonic Scattering in Biological Tissues: Taylor & Francis, 1992.
[31] G. S. Kino and R. G. Stearns, "Acoustic wave generation by thermal excitation of small regions," Applied Physics Letters, vol. 47, pp. 926-928, 1985.
[32] F. W. Kremkau and K. J. Taylor, "Artifacts in ultrasound imaging," Journal of Ultrasound in Medicine, vol. 5, pp. 227-37, 1986.
[33] W. R. Hedrick, D. L. Hykes, and D. E. Starchman, Ultrasound physics and instrumentation: Mosby, 1995.
[34] K. A. Scanlan, "Sonographic artifacts and their origins," American Journal of Roentgenology, vol. 156, pp. 1267-1272, 1991.
[35] M. C. Ziskin, D. I. Thickman, N. J. Goldenberg, M. S. Lapayowker, and J. M. Becker, "The comet tail artifact," Journal of Ultrasound in Medicine, vol. 1, pp. 1-7, 1982.
[36] B. A. Wendell and P. A. Athey, "Ultrasonic appearance of metallic foreign bodies in parenchymal organs," Journal of Clinical Ultrasound, vol. 9, pp. 133-135, 1981.
[37] L. Avruch and P. L. Cooperberg, "The ring-down artifact," Journal of Ultrasound in Medicine, vol. 4, pp. 21-8, 1985.
[38] S. Laughlin, "A simple coding procedure enhances a neuron's information capacity," Zeitschrift fur Naturforschung - Section C Journal of Biosciences, vol. 36, pp. 910-2, 1981.
[39] R. C. Gonzalez and R. E. Woods, Digital Image Processing: Pearson/Prentice Hall, 2008.
[40] J. W. Tukey, "Exploratory data analysis," 1977.
[41] N. Otsu, "A Threshold Selection Method from Gray-Level Histograms," IEEE Transactions on Systems, Man and Cybernetics, vol. 9, pp. 62-66, 1979.
[42] M. Nixon, Feature Extraction & Image Processing: Elsevier Science, 2008.
[43] J. Canny, "A Computational Approach to Edge Detection," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-8, pp. 679-698, 1986.
[44] B. Al, Handbook of Image and Video Processing: Academic Press, Inc., 2000.
[45] S. G. Mallat, "A theory for multiresolution signal decomposition: the wavelet representation," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, pp. 674-693, 1989.
[46] D. L. Donoho, "De-noising by soft-thresholding," IEEE Transactions on Information Theory, vol. 41, pp. 613-627, 1995.
[47] D. L. Donoho and I. M. Johnstone, "Threshold selection for wavelet shrinkage of noisy data," in Engineering in Medicine and Biology Society, 1994. Engineering Advances: New Opportunities for Biomedical Engineers. Proceedings of the 16th Annual International Conference of the IEEE, 1994, pp. A24-A25 vol.1.
[48] T. J. Hall, M. Bilgen, M. F. Insana, and T. A. Krouskop, "Phantom materials for elastography," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 44, pp. 1355-1365, 1997.
[49] E. L. Madsen, M. A. Hobson, H. Shi, T. Varghese, and G. R. Frank, "Tissue-mimicking agar/gelatin materials for use in heterogeneous elastography phantoms," Physics in medicine and biology, vol. 50, pp. 5597-5618, 2005.
[50] G. S. Rao and S. G. Rao, Numerical Analysis: New Age International, 2006.
  • 同意授權校內瀏覽/列印電子全文服務,於2018-01-29起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-01-29起公開。

  • 如您有疑問,請聯絡圖書館