進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2012201923064400
論文名稱(中文) 光渦流光鉗引致膽固醇液晶微球之軌道運動
論文名稱(英文) Optical vortex tweezers induced orbital motion of cholesteric liquid crystal microdroplets
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 108
學期 1
出版年 108
研究生(中文) 吳崇瑜
研究生(英文) Chung-Yu Wu
學號 L76061367
學位類別 碩士
語文別 中文
論文頁數 74頁
口試委員 指導教授-李佳榮
口試委員-莫定山
口試委員-李偉
中文關鍵字 光渦流光鉗  自旋角動量  軌道角動量  q-plate  膽固醇液晶  偶氮液晶 
英文關鍵字 optical vortex tweezers  spin angular momentum  orbital angular momentum  cholesteric liquid crystal  q-plate  azo dyes 
學科別分類
中文摘要 本論文使用具自旋與軌道角動量之光渦流光鉗去抓取具有布拉格洋蔥狀結構之膽固醇液晶微球(cholesteric liquid crystal, CLC),主要觀察與研究微球同時受到光鉗兩種角動量影響下之運轉行為。論文分為兩部分實驗,第一部分實驗研究當CLC微球旋性與光渦流光鉗之圓偏振(或自旋角動量)旋性相同與相反時,微球的軌道轉速之差異。第二部分實驗研究當額外添加偶氮液晶至微球內,光渦流光鉗引致微球做軌道旋轉轉速受到紫外光照射微球前後之差異。
第一部分實驗結果顯示,當渦流光鉗圓偏振旋性與CLC微球旋性相同(相反)時,會讓微球軌道轉速較快(較慢),此乃因為當光渦流光鉗圓偏振與微球旋性相反時,光子可折射入微球,因光子撞擊微球時給與微球方位角散射力(azimuthal scattering force)而將軌道角動量轉移給微球使微球轉動。但若當光渦流光鉗圓偏振與微球旋性相同時,光子會被CLC微球反射,反射的光子會給予微球兩倍的入射軌道角動量(亦即給予兩倍的入射方位角散射力),造成微球會以較快的速度轉動。針對實驗結果,本論文進一步利用古典力學建立一微球之軌道運動終端轉速之近似式與提出簡單物理模型以解釋本實驗結果。實驗也發現微球旋轉方向由光鉗帶有之軌道角動量旋性主導決定。
第二部分實驗結果顯示,當加入偶氮液晶至微球內時,紫外光照射後會使偶氮液晶發生transcis同素異構化反應導致CLC微球以等溫相變形式轉變成各向同性態。比較於紫外光照射前後,發現微球以右與左旋光渦流光鉗引致軌道運動之轉速皆大量下降至相同值,此結果顯示微球變為各向同性態已對微球圓偏振旋性不再具有選擇性。本論文進一步利用微球軌道運動終端轉速之近似式解釋各向同性態的微球轉速變慢之可能原因: (一)、微球相變後之等效折射率下降而導致光鉗光子給予的散射力(矩)下降;(二)、由於微球相變後之體積明顯變大導致微球與環境之接觸表面積變大而造成拖曳力矩的上升;(三)、由於光鉗作用在小球的光圓環位置不變,當小球相變後體積變大而導致光鉗光圓環作用在微球上的有效體積下降。綜合上述三個原因而導致小球在相變成各向同性態後其轉速大量下降。
英文摘要 This thesis uses optical vortex tweezers (OVTs) with spin and orbital angular momentum (SAM and OAM) to capture cholesterol liquid crystal microdroplets (CLC MDs) with Bragg onion-like structure. The experiment mainly observes and studies the orbital motion behavior of the CLC MDs under the influence of the two angular momenta of the OVTs. The first part of the experiment is to study the difference of the orbital speed of the CLC MDs when the handedness of the CLC MDs and the sense of the circular polarization (or SAM) of the OVTs are the same or opposite. The second part of the experiment studies the difference between the orbital motion speeds of the CLC MDs caused by the manipulation of the OVTs before and after the CLC MDs are exposed to UV light.
The first part of the experimental results shows that when the sense of the circular polarization of the OVTs is the same as that of the handedness of the CLC MDs, the orbital speed of the MDs is faster than when the circular polarization of the OVTs is opposite to the CLC MDs. This is because when the circular polarization of the OVTs is opposite to the handed sense of the MDs, the photons can be refracted into the MDs, and the OAM are transferred to the MDs because the photon impacts the MDs with azimuthal scattering force which will induce the orbital rotation of the MDs. However, if the circular polarization of the eddy current clamp is the same as the handed sense of the MDs, the photons will be Bragg-reflected by the MDs. The reflected photons will give the MDs twice the incident OAM (i.e., twice the incident azimuthal scattering force), causing the MDs to rotate at a faster speed. This study further uses Classical Mechanics to establish an approximate formula for the terminal speed of the orbital motion of the MDs with a simple physical model to explain the experimental results. Experiments have also found that the direction of rotation of the MDs is dominated by the direction of the OVTs OAM.
The second part of the experimental results show that when azo LCs are added to the CLC MDs, the UV light will cause the azo LCs to undergo trans-cis isomerization reaction, causing the CLC MDs to isothermally transform into isotropic phase. Comparing the cases before and after UV irradiation, it is found that the orbital motion of the MDs caused by the right- and left-handed OVTs both have significantly decreased to the same angular velocity. This result shows that the isotropic MDs are no longer selective for the circular polarization of the MDs. This study further uses the approximate formula of the terminal rotation speed of the MDs to explain the possible reasons for the large slowdown of the MDs in the isotropic state. (1) The decrease in the equivalent refractive index of the MDs after the phase change of the MDs causes the scattering force (torque) given by the OVTs photon to decrease. Additionally, because the position of the donut-like ring of the OVTs on the MDs remains unchanged, the effective exposure volume of the optical ring on the MDs decreases when each MD enlarges, also leading to the decrease of the scattering force (torque) given by the OVTs photon. (2) Due to the fair enlargement of each MD after the phase change, the contact surface area between the MDs and the environment becomes larger, resulting in an increase in drag torque. Based on the above reasons, the rotation speed of the MDs after the phase transition from CLC to isotropic state is greatly reduced.
論文目次 摘要 I
致謝 XIII
圖目錄 XVI
表目錄 XIX
第一章 緒論 1
第二章 液晶光學與物理 5
2.1液晶的起源 5
2.1.1液晶態 5
2.2液晶的分類 6
2.2.1溶致型液晶 6
2.2.2熱致型液晶 6
2.3液晶的物理特性 14
2.3.1雙折射性 14
2.3.2介電異向性 17
2.3.3 連續彈性體 19
2.4溫度與雙折射性的關係 21
2.5偶氮染料與光致異構化反應 22
第三章 光鉗 24
3.1 光鉗簡介 24
3.1.1 光鉗理論 24
3.1.2 光壓力 24
3.1.3 光鉗的橫向力與縱向力 25
3.1.4 光鉗的Laguerre-Gaussian 模態 28
3.1.5 Q-plate 28
3.2 光的角動量(AM) 31
3.2.1 自旋角動量(SAM) 31
3.2.2 軌道角動量(OAM) 34
3.2.3 角動量耦合理論 36
3.3 OAM光致軌道運動 38
3.3.1 軌道角動量的轉移 38
3.3.2 軌道旋轉的運動方程 39
第四章 樣品製備與實驗架設 42
4.1 使用材料介紹 42
4.2 藥品配方 46
4.3 樣品製作 47
4.4 實驗架設 49
第五章 實驗結果與討論 56
5.1 左旋與右旋渦旋光鉗作用在右旋CLC微球之軌道運動 56
5.1.1 CLC微球之軌道運動於顯微鏡下之觀察 56
5.1.2 軌道運動分析與討論 57
5.2 左旋與右旋渦旋光作用在右旋CLC摻雜偶氮染料下的軌道運動 63
5.2.1 CLC微球之軌道運動於顯微鏡下之觀察 63
5.2.2 軌道運動分析與討論 65
第六章 結論與未來展望 67
6.1 結論 67
6.2 未來展望 67
參考文獻 68
參考文獻 1. D. S. Miller, X. Wang, N. L. Abbott, “Design of functional materials based on liquid crystalline droplets,” Chem. Mater. 26, 496–506 (2013).
2. X. Wang, D. S. Miller, J. J. de Pablo, N. L. Abbott, “Reversible switching of liquid crystalline order permits synthesis of homogeneous populations of dipolar patchy microparticles,” Adv. Funct. Mater. 24, 6219–6226 (2014).
3. E. Tjipto, K. D. Cadwell, J. F. Quinn, A. P. R. Johnston, N. L. Abbott, and F. Caruso, “Tailoring the interfaces between nematic liquid crystal emulsions and aqueous phases via layer-by-layer assembly,” Nano Lett. 6, 2243–2248 (2006).
4. J. Zou, J. Fang, “Director configuration of liquid-crystal droplets encapsulated by polyelectrolytes,” Langmuir 26, 7025–7028 (2010).
5. J. K. Gupta, J. S. Zimmerman, J. J. de Pablo, F. Caruso, N. L. Abbott, “Characterization of adsorbate-induced ordering transitions of liquid crystals within monodisperse droplets,” Langmuir 25, 9016–9024 (2009).
6. R. J. Carlton, Y. M. Zayas-Gonzalez, U. Manna, D. M. Lynn, N. L. Abbott, “Surfactant-Induced Ordering and Wetting Transitions of Droplets of Thermotropic Liquid Crystals “Caged” Inside Partially Filled Polymeric Capsules,” Langmuir 30 14944–14953 (2014).
7. D. Sec, T. Porenta, M. Ravnik, S. Zumer, “Geometrical frustration of chiral ordering in cholesteric droplets,” Soft Matter 8, 11982–11988 (2012).
8. F. Xu, P. P. Crooker, “Chiral nematic droplets with parallel surface anchoring,” Phys. Rev. E 56, 6853–6860 (1997).
9. M. Humar1, I. Musevic, “3D microlasers from self-assembledcholesteric,” Opt. Express 18, 26995 (2010).
10. R. Barboza, U. Bortolozzo, M. G. Clerc, S. Residori, “Berry Phase of Light under Bragg Reflection by Chiral Liquid-Crystal Media,” Phys. Rev.Lett. 117, 053903(2016).
11. J. Kobashi, H. Yoshida, “Polychromatic Optical Vortex Generation from Patterned Cholesteric Liquid Crystals,” M. Ozaki, Nat. Photonics 10, 389 (2016).
12. J. Kobashi, H. Yoshida, M. Ozaki, "Broadband optical vortex generation from patterned cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 646, 117-125 (2017).
13. M. Rafayelyan, G. Tkachenko, E. Brasselet, “Bragg-Berry mirrors: reflective broadband q-plates,” Phys. Rev. Lett. 116, 253902 (2016).
14. M. Rafayelyan, G. Agez, and E. Brassel et, “Ultrabroadband gradient-pitch Bragg-Berry mirrors,” Phys. Rev. A 96, 043862 (2017).
15. S. Juodkazis, M. Shikata, T. Takahashi, S. Matsuo, and H. Misawa, “Fast optical switching by a laser-manipulated microdroplet of liquid crystal,” Appl. Phys. Lett. 74, 3627–3629 (1999).
16. S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, “High- efficiency optical transfer of torque to a nematic liquid crystal droplet,” Appl. Phys. Lett. 82, 4657–4659 (2003).
17. N. Murazawa, S. Juodkazis, S. Matsuo, and H. Misawa, “Control of the molecular alignment inside liquid-crystal droplets by use of laser tweezers,” Small 1, 656–661 (2005).
18. N. Murazawa, S. Juodkazis, and H. Misawa, “Characterization of bipolar and radial nematic liquid crystal droplets using laser-tweezers,” J. Phys. D: Appl. Phys. 38, 2923–2927 (2005).
19. N. Murazawa, S. Juodkazis, and H. Misawa, “Laser manipulation based on a light- induced molecular reordering,” Opt. Express 14, 2481–2486 (2006).
20. E. Brasselet, N. Murazawa, S. Juodkazis, and H. Misawa, “Statics and dynamics ofradial nematic liquid-crystal droplets manipulated by laser tweezers,” Phys. Rev. E 77, 041704 (2008).
21. Y. Yang, P. D. Brimicombe, N. W. Roberts, M. R. Dickinson, M. Osipov, and H. F. Gleeson, “Continuously rotating chiral liquid crystal droplets in a linearly polarized laser trap,” Opt. Express 16, 6877–6882 (2008).
22. M. Mosallaeipour, Y. Hatwalne, N. V. Madhusudana, and S. Ananthamurthy, “Laser induced rotation of trapped chiral and achiral nematic droplets,” J. Mod. Opt. 57, 395–399 (2010).
23. J. Hernandez, C. Provenzano, P. Pagliusi, and G. Cipparrone, “Optical manipulation of liquid crystal droplets through holographic polarized tweezers: Magnus effect,” Mol. Cryst. Liq. Cryst. 558, 72–83 (2012).
24. S. Phanphak, A. Pattanaporkratana, J. Limtrakul, and N. Chattham, “Precession mechanism of nematic liquid crystal droplets under low power optical tweezers,” Ferroelectrics 468,114–122 (2014).
25. F. J. Belintante, "On the current and the density of the electric charge, the energy, the linear momentum and the angular momentum of arbitrary fields". Physica. 7, 449–474.
26. Chen Menglin,L. N. Jiang, Li Jun, Wei E. I. Sha, "Ultrathin Complementary Metasurface for Orbital Angular Momentum Generation at Microwave Frequencies". IEEE Trans. Antennas Propag. 00, 396–400(2016).
27. R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115 (1936).
28. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes”,Phys. Rev. A 45, 8185 (1992).
29. A. Cerjan, C. Cerjan, "Orbital angular momentum of Laguerre–Gaussian beams beyond the paraxial approximation,” OSA Proc. 28, 2253–2260 (2011).
30. A. T. O'Neil,I. MacVicar, L. Allen, M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002)
31. L. Aolita, S. P. Walborn, “Quantum communication without alignment using multiple-qubit single-photon states,” Phys. Rev. Lett. 98, 100501 (2007).
32. F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, “Overcoming the rayleigh criterion limit with optical vortices,” Phys. Rev. Lett. 97, 163903 (2006).
33. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinszteindunlop, “Direct observation of transfer of angular-momentum to absorptive particles from a laser- beam with a phase sigularity,” Phys. Rev. Lett. 75, 826–829 (1995).
34. N. B. Simpson, K. Dholakia, L. Allen, M. J. Padgett, ” Mechanical equivalence of spin and orbital angular momentum of light: An optical spanner,” Opt. Lett. 22, 52–54 (1997).
35. M. J. Padgett, L. Allen, “The poynting vector in Laguerre-Gaussian laser modes,” Opt. Commun. 121, 36–40 (1995).
36. A. T. O'Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002).
37. V. Garces-Chavez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003).
38. H. Bouas-Laurent and H. DÜRR, “Organic photochromism” Pure Appl. Chem. 73, 148–162 (2001).
39. F. Reinitzer, Beiträge zur Kenntnis des Cholesterins, Monatshefte für Chemie 9, 421–41(1888).
40. Deng‐Ke Yang and Shin‐Tson Wu “Fundamentals of Liquid Crystal Devices, Second Edition,” 2015 John Wiley & Sons, Ltd. CH.1~CH3 (2014).
41. M. Humarl and I. Musevic, “3D microlasers from self-assembledcholesteric liquid-crystal microdroplets,” OPTICS EXPRESS 18, 26 (2010).
42. Eugene Hecht, “Optics,”, 4th , Addison Wesley, Ch8, p.360~368 (2002).
43. F. M. Leslie et al., “Continuum theory for nematic liquid crystals” Springer-Verlag, Ch1(1992).
44. S.Smith, F.Bou-Abdallah “The Kinetics of the Cis-to-Trans Thermal Isomerization of Thermodynamics & Catalysis,” Org. Lett. 12, 3514 (2010)
45. A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett. 24, 156–158 (1970).
46. E. F. Nichols and G. F. Hull, “A Preliminary Communication on the Pressure of Heat and Light Radiation,” Phys. Rev. 13, 307–309 (1901).
47. AbramochkinE, T. Alieva , “Closed-form expression for mutual intensity evolution of Hermite-Laguerre-Gaussian Schell-model beams,” Optics letters 42, 4032–4035 (2017).
48. L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation,” Phys. Rev. Lett. 88, 221102 (2006).
49. L. Marrucci, E. Karimi, S. Slussarenko, B Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital optical angular momentum conversion in liquid crystal “q-plate”: classical and quantum applications,” Mol. Cryst. Liq. Cryst. 561, 48–56 (2012).
50. L. Marrucci, “Generation of helical modes of light by spin-to-orbital angular momentum conversion in inhomogeneous liquid crystals,” Mol. Cryst. Liq. Cryst. 488, 148–162 (2008).
51. W. Gerlach, O. Stern, “Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld,” Z. Phys. 9, 349–352 (1922)
52. R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–117 (1936).
53. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, ” Optical torque controlled by elliptical polarization,” Opt. Lett. 23, 1-3 (1998).
54. M. G. Donato et al., ”Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5, 3656 (2014).
55. L. Marrucci, C. Manzo, D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
56. Garces-Chavez, V. et al. , ”Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003).
H. He, M. E. J. Friese, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
57. K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda,J. Arlt,K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B 4, 582–589 (2002).
58. O'Neil, A. T., MacVicar, I., Allen, L. & Padgett, M. J., “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002).
59. X. Zhou, Z. Chen, Z. Liu, J. Pu, ” Experimental investigation on optical vortex tweezers for microbubble trapping,” Open Physics 16, 383-386 (2018).
60. AY Okulov “Angular momentum of photons and phase conjugation” J. Phys. B At. Mol. Opt. Phys. 41, 10-11 (2008).
61. M . E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, N. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
62. E. Brasselet, N. Murazawa, and H. Misawa, "Optical vortices from liquid crystal droplets," Phys. Rev. Lett. 103, 103903 (2009).
63. Y. Yao, X. Liang, M. Zhu, W. Zhu, J. Geng, and R. Jin, ‘‘Analysis and experiments on reflection and refraction of orbital angular momentum waves,’’ IEEE Trans. Antennas Propag. 67, 2085–2094 (2019).
64. M. Rafayelyan and E. Brasselet, “Spin-to-Orbital Angular Momentum Mapping of Polychromatic Light”, Phys. Rev. Lett. 120, 213903 (2018).
65. X. Wang, Y. Liu, L. Guo, and H. Li, 11 Potential of vortex beams with orbital angular momentum modulation for deep-space optical communication,” Opt. Eng. 53, 056107 (2014).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-12-10起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-12-10起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw