進階搜尋


下載電子全文  
系統識別號 U0026-2010201415102300
論文名稱(中文) 無波前感測式適應性光學之時間域聚焦多光子顯微術與即時FPGA適應性光學系統
論文名稱(英文) Wavefront Sensorless Adaptive Optics in Temporal Focusing Multiphoton Microscopy and Real-time FPGA Adaptive Optics System
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 103
學期 1
出版年 103
研究生(中文) 張家源
研究生(英文) Chia-Yuan Chang
學號 L78991013
學位類別 博士
語文別 英文
論文頁數 90頁
口試委員 指導教授-陳顯禎
口試委員-傅永貴
口試委員-李永春
口試委員-閻偉中
口試委員-保羅 坎帕尼奧拉
中文關鍵字 共軛焦顯微術  多光子顯微術  光孤子自頻率偏移  時間域聚焦  波前感測器  適應性光學 
英文關鍵字 confocal microscopy  multiphoton microscopy  soliton self-frequency shift  temporal focusing  wavefront sensor  adaptive optics 
學科別分類
中文摘要 共軛焦顯微術與多光子顯微術在當今生醫研究領域已經成為了非常重要的分析觀測工具,其奈微米等級光學解析度以及三維生物顯像能力並搭配各式各樣的螢光染劑與不同的激發機制,更是提供研究人員更多以往所無法觀測到的生物影像細節。此論文中,首先呈現整合共軛焦與多光子激發的螢光顯微系統並用於觀測活體老鼠的即時影像系統,其中利用光孤子自頻率偏移技術搭配經由光子晶體光纖產生頻率偏移的光孤子,搭配BiBO晶體倍頻技術可彈性調整出特定波段的脈衝光源並針對欲使用的螢光染劑雙光子進行最佳化的激發。進一步將多光子顯微術搭配時間域聚焦技術,可發展一時間域聚焦多光子顯微系統,擁有廣視域光學切片的能力並且已經有許多研究成果呈現其具有許多高潛力的應用。然而系統的時間域干擾會降低其激發效率並且降低光學影像品質,為了補償此干擾,將系統整合無波前感測式的適應性光學系統,經由爬山演算法得到局部的光學影像最強化的回饋訊號,控制可調變聚焦鏡的以降低其時間域干擾。經由系統修正過後,系統縱向雙光子激發螢光曲線不但能重新對稱性的聚焦且解析度也能回到未受干擾前的品質。
適應性光學系統已經成功驗證是可以幫助光學系統補償干擾,但是其系統整合的複雜度與控制迴圈速度卻仍是阻礙適應性光學系統的實際應用。論文中也發展一基於FPGA的Shack-Hartmann波前感測器(Shack-Hartmann wavefront sensor,SHWS),並可呈現30 Hz即時的動態波前量測。利用實驗室自製的影像解碼器將CCD影像訊號數位化並將影像奇行域與偶行域資訊傳回FPGA,只有奇行域資訊用來重建波前,而傳送偶行域的時間則用來進行計算與其他應用上的需求,因此在每張波前影像呈現的間隔並不需要有額外的時間延遲。有了此基於FPGA的SHWS,進一步發展一可輕易整合式的適應性光學系統,在基於FPGA平台下發展即時狀態空間多通道控制器,並且成功整合至一雷射聚焦系統。此系統設定可調變聚焦鏡的32通道當作輸入,SHWS量得的Zernike多項式當作輸出來離線建立一個多通道狀態空間的系統模型。在即時控制迴圈下,FPGA平台首先計算SHWS量得的光學波前的Zernike多項式當作系統回饋訊號,然後針對此系統模型做最佳化設計的狀態空間控制器將會驅動可調變聚焦鏡進行波前干擾的補償。在實驗上,此系統成功降低低頻率外在熱擾動對系統的影響。
英文摘要 Confocal microscopy and multiphoton excitation microscopy have become a very important imaging and analyzing tool for biomedical research. The micron/nanometer-scale spatial resolution and three-dimension imaging ability enable researchers to observe more detail information with multiple combinations of different fluorescent dyes and light excitation mechanism. This thesis first reveals an optical microscope combined with confocal microscopy and multiphoton microscopy. The system is mainly designed for in vivo mouse imaging. The soliton self-frequency shift (SSFS) via a photonic crystal fiber generates longer wavelength soliton. With BiBO crystal frequency doubling technique, it further allows us to flexibly adjust femtosecond pulse wavelength to match the optimal two-photon absorption band of the fluorescent dye in order to provide superior excitation efficiency. By combining the multiphoton excitation mechanism and temporal focusing technique, this thesis also demonstrates a temporal focusing multiphoton microscopy system which has widefield optical sectioning ability and already demonstrates the potential for widely applications. However, temporal profile distortions reduce excitation efficiency and degrade image quality. In order to compensate the distortions, a wavefront sensorless adaptive optics system (AOS) was integrated. The feedback control signal of the AOS was acquired from local image intensity maximization via a hill-climbing algorithm. The control signal was then utilized to drive a deformable mirror in such a way as to eliminate the distortions. With the AOS correction, not only the axial excitation symmetrically is refocused, but the axial resolution with two-photon excited fluorescence (TPEF) intensity is also maintained.
AOS is successfully proven that it can help optical system to get rid of aberrations. However, the integration complexity and control loop speed are serious limitations for practical use. Furthermore, a field programmable gate array (FPGA)-based Shack-Hartmann wavefront sensor (SHWS) is developed for performing 30 Hz real-time wavefront measurement. A lab-made video decoder digitalizes the CCD video signal with an odd field and an even field of one frame, and transmits the data to the FPGA. Only the odd field image is transmitted for reconstructing the wavefront, and then the computations and further customized application are executed in the even field time slot; hence, no additional time delay between two frames is needed. With the FPGA-based SHWS, an easily implementable AOS based on a real-time FPGA platform with state-space multichannel control has been developed, and also integrated into a laser focusing system successfully. The overall system with a 32-channel driving signal for a deformable mirror as input and a Zernike polynomial via the SHWS as output is optimally identified to construct a multichannel state-space model. In real-time operation, the FPGA platform first calculates the Zernike polynomial of the optical wavefront measured from the SHWS as the feedback signal. Then, a state-space multichannel controller designed by the identified model is implemented in the FPGA to drive the DM for phase distortion compensation. The FPGA-based AOS is capable of suppressing low-frequency thermal disturbances.
論文目次 摘要 I
Abstract III
致謝 V
Figure Captions XI
Abbreviations XV
Chapter 1 Introduction 1
1-1 Introduction 1
1-2 Motivation 6
1-3 Outline 9
Chapter 2 Construction of Confocal and Multiphoton Microscope for in vivo Imaging 11
2-1 Confocal detection and multiphoton excitation 11
2-2 Soliton self-frequency shift (SSFS) 15
2-3 System setup 18
2-3-1 Synchronization platform 21
2-3-2 System specification and resolution 23
2-4 In vivo mouse imaging 26
Chapter 3 Wavefront Sensorless Adaptive Optics in Temporal Focusing Multiphoton Microscopy 28
3-1 Temporal focusing and distortion 28
3-1-1 Basic principle 28
3-1-2 Temporal distortion 30
3-2 System setup 31
3-3 Wavefront sensorless image-based feedback control 35
3-4 Compensation with AOS 37
3-4-1 Axial resolution compensation 37
3-4-2 Fluorescent thin film images with AOS 40
3-4-3 Imaging fluorescent beads at different depths 42
Chapter 4 Highly Integrable FPGA-based Shack-Hartmann Wavefront Sensor 45
4-1 Shack-Hartmann wavefront sensor 45
4-1-1 SHWS head 47
4-1-2 Video decoder 49
4-2 FPGA implementation 49
4-3 Wavefront Sensing via FPGA-based SHWS 54
4-3-1 System setup 54
4-3-2 Background noise, dynamic range, and resolution 55
4-3-3 DM flattening with AOS 57
Chapter 5 Real-time FPGA-based Adaptive Optics System with State-Space Model Multichannel Control 59
5-1 Adaptive optics 59
5-2 System setup 60
5-3 State-space multichannel controller 63
5-3-1 MIMO system identification 63
5-3-2 Real-time linear-quadratic-integral controller 64
5-4 Real-time wavefront compensations 66
5-4-1 Static aberration compensation 66
5-4-2 Dynamic thermal disturbance compensation 68
Chapter 6 Conclusions 70
References 74
Curriculum Vitae 85
參考文獻 1. M. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning 10, 128-138 (1988).
2. B. R. Masters, Confocal Microscopy and Multiphoton Excitation Microscopy: The Genesis of Live Cell Imaging (SPIE Publications, 2006).
3. J. G. White, W. B. Amos, and M. Fordham, “An evaluation of confocal versus conventional imaging of biological structures by fluorescence light-microscopy,” J. Cell Bio. 105, 41-48 (1987).
4. I. Veilleux, J. Spencer, D. Biss, D. Côté, and C. P. Lin, “In vivo cell tracking with video rate multimodality laser scanning microscopy,” IEEE Journal of Sel. Top. Quant. Elect. 14, 10-18 (2008).
5. C. L. Celso, C. P. Lin, and D. T. Scadden, “In vivo imaging of transplanted hematopoietic stem and progenitor cells in mouse calvarium bone marrow,” Nat. Protoc. 6, 1-14 (2011).
6. L. Zhang, C. Alt, P. Li, R. M. White, L. I. Zon, X. Wei, and C. P. Lin, “An optical platform for cell tracking in adult zebrafish,” Cytometry A. 81,176-182 (2011).
7. S. Choi, P. Kim, R. Boutilier, M. Y. Kim, Y. J. Lee, and H. Lee, “Development of a high speed laser scanning confocal microscope with an acquisition rate up to 200 frames per second,” Opt. Express 21, 23611-23618 (2013).
8. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990).
9. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369-1377 (2003).
10. B. R. Masters and P. T. So, eds., Handbook of Biomedical Nonlinear Optical Microscopy (Oxford, 2008).
11. I. Freund and M. Deutsch, “Second-harmonic microscopy of biological tissue,” Opt. Lett. 11, 94-96 (1986).
12. J. S. Russell, “Report on waves,” Fourteenth meeting of the British Association for the Advancement of Science (1844).
13. L. F. Mollenauer and J. P. Gordon, Solitons in Optical Fibers: Fundamentals and Applications (Academic Press, 2006).
14. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662-664 (1986).
15. J. H. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quant. 14, 713-723 (2008).
16. P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Elect. 23, 1938-1946 (1987).
17. K. Wang, T.-M. Liu, J. Wu, N. G. Horton, C. P. Lin, and C. Xu, “Three-color femtosecond source for simultaneous excitation of three fluorescent proteins in two-photon fluorescence microscopy,” Biomed. Opt. Express 3, 1972-1977 (2012).
18. G. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express 13, 2153-2159 (2005).
19. D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express 13, 1468-1476 (2005).
20. M. E. Durst, G. Zhu, and C. Xu, “Simultaneous spatial and temporal focusing for axial scanning,” Opt. Express 14, 12243-12254 (2006).
21. E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7, 848-854 (2010).
22. O. D. Therrien, B. Aubé, S. Pagès, P. D. Koninck, and D. Côté, “Wide-field multiphoton imaging of cellular dynamics in thick tissue by temporal focusing and patterned illumination,” Biomed. Opt. Express 2, 696-704 (2011).
23. Y.-C. Li, L.-C. Cheng, C.-Y. Chang, C.-H. Lien, P. J. Campagnola, and S.-J. Chen, “Fast multiphoton microfabrication of freeform polymer microstructures by spatiotemporal focusing and patterned excitation,” Opt. Express 20, 19030-19038 (2012).
24. Y.-C. Li, L.-C. Cheng, C.-Y. Chang, C.-Y. Lin, N.-S. Chang, P. J. Campagnola, C. Y. Dong, and S.-J. Chen, “High-throughput fabrication of gray-level bio-microstructures via temporal focusing excitation and laser pulse control,” J. Biomed. Opt. 18, 075004 (2013).
25. L.-C. Cheng, C.-Y. Chang, C.-Y. Lin, K.-C. Cho, W.-C. Yen, N.-S. Chang, C. Xu, C. Y. Dong, and S.-J. Chen, “Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning,” Opt. Express 20, 8939-8948 (2012).
26. H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229-236 (1953).
27. R. K. Tyson, Principles of Adaptive Optics, 2nd ed. (Academic Press, 1998)
28. N. Hubin and L. Noethe, “Active optics, adaptive optics, and laser guide stars,” Science 262, 1390-1394 (1993).
29. R. K. Tyson, “Bit-error rate for free-space adaptive optics laser communications,” J. Opt. Soc. Am. A 19, 753-758 (2002).
30. M. J. Booth, “Adaptive optics in microscopy,” Philos. Trans. R. Soc. London, Ser. A 365, 2829-2843 (2007).
31. D. P. Biss, D. Sumorok, S. A. Burns, R. H. Webb, Y. Zhou, T. G. Bifano, D. Côté, I. Veilleux, P. Zamiri, and C. P. Lin, “In vivo fluorescent imaging of the mouse retina using adaptive optics,” Opt. Lett. 32, 659-661 (2007).
32. J. M. Girkin, S. Poland, and A. J. Wright, “Adaptive optics for deeper imaging of biological samples,” Curr. Opin. Biotechnol. 20, 106-110 (2009).
33. B. P. Cumming, A. Jesacher, M. J. Booth, T. Wilson, and M. Gu, “Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate,” Opt. Express 19, 9419-9425 (2011).
34. A. Dubra, Y. Sulai, J. L. Norris, R. F. Cooper, A. M. Dubis, D. R. Williams, and J. Carroll, “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2, 1864-1876 (2011).
35. A. Wirth, J. Navetta, D. Looze, S. Hippler, A. Glindemann, and D. Hamilton, “Real-time modal control implementation for adaptive optics,” Appl. Opt. 37, 4586-4597 (1998).
36. L. Zhu, P.-C. Sun, D.-U. Bartsch, W. R. Freeman, and Y. Fainman, “Adaptive control of a micromachined continuous-membrane deformable mirror for aberration compensation,” Appl. Opt. 38, 168-176 (1999).
37. C. Kulcsár, H.-F. Raynaud, C. Petit, J.-M. Conan, and P. V. de Lesegno, “Optimal control, observers and integrators in adaptive optics,” Opt. Express 14, 7464-7476 (2006).
38. C.-Y. Chung, K.-C. Cho, C.-C. Chang, W.-C. Yen, and S.-J. Chen, “Adaptive optics system with liquid crystal phase-shift interferometer,” Appl. Opt. 45, 3409-3414 (2006).
39. R. Muradore, E. Fedrigo, and C. Correia, “LQ control design for adaptive optics systems based on MIMO identified model,” Proc. SPIE 6272, 62725H (2006).
40. K. Hinnen, M. Verhaegen, and N. Doelman, “Exploiting the spatiotemporal correlation in adaptive optics using data-driven H2-optimal control,” J. Opt. Soc. Am. A 24, 1714-1725 (2007).
41. C. Petit, J.-M. Conan, C. Kulcsár, and H.-F. Raynaud, “Linear quadratic Gaussian control for adaptive optics and multiconjugate adaptive optics: experimental and numerical analysis,” J. Opt. Soc. Am. A 26, 1307-1325 (2009).
42. S. Monirabbasi and S. Gibson, “Adaptive control in an adaptive optics experiment,” J. Opt. Soc. Am. A 27, A84-A96 (2010).
43. X. Cui, J. Ren, G. J. Tearney, and C. Yang, “Wavefront image sensor chip,” Opt. Express 18, 16685-16701 (2010).
44. J. M. Geary, Introduction to Wavefront Sensors (SPIE Press, 1995).
45. W. H. Southwell, “Wave-front estimation from wave-front slope measurements,” J. Opt. Soc. Am. 70, 998-1006 (1980).
46. B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17, S573-S577 (2001).
47. W. Wolf, FPGA-Based System Design (Prentice Hall, 2004).
48. E. Magdaleno, M. Rodríguez, J. M. Rodríguez-Ramos, and A. Ayala, “Modal Fourier wavefront reconstruction using FPGA technology,” Micro Nanosyst. 1, 72-82 (2009).
49. Z. Kincses, L. Orzó, Z. Nagy, G. Mező, and P. Szolgay, “High-speed, SAD based wavefront sensor architecture implementation on FPGA,” J. Sign. Process Syst. 64, 279-290 (2011).
50. K. Kepa, D. Coburn, J. C. Dainty, and F. Morgan, “High speed optical wavefront sensing with low cost FPGAs,” Meas. Sci. Rev. 8, 87-93 (2008).
51. E. Magdaleno, M. Rodríguez, J. M. R.-Ramos, and A. Ayala, “Modal Fourier wavefront reconstruction using FPGA technology,” Micro. Nanosyst. 1, 72-82 (2009).
52. L. F. R.-Ramos, T. Viera, J. V. Gigante, F. Gago, G. Herrera, A. Alonso, and N. Descharmes, “FPGA adaptive optics system test bench,” Proc. SPIE 5903, 59030D (2005).
53. C. D. Saunter, G. D. Love, M. Johns, and J. Holmes, “FPGA technology for high-speed low-cost adaptive optics,” Proc. SPIE 6018, 60181G (2005).
54. K.-C. Cho, C.-H. Lien, C.-Y. Lin, C.-Y. Chang, L. L. H. Huang, P. J. Campagnola, C. Y. Dong, and S.-J. Chen, “Enhanced two-photon excited fluorescence in three-dimensionally crosslinked bovine serum albumin microstructures,” Opt. Express 19, 11732-11739 (2011).
55. W.-S. Kuo, C.-H. Lien, K.-C. Cho, C.-Y. Chang, C.-Y. Lin, L. L. H. Huang, P. J. Campagnola, C. Y. Dong, and S.-J. Chen, “Multiphoton fabrication of freeform polymer microstructures with gold nanorods,” Opt. Express 18, 27550-27559 (2010).
56. Vogel, A., Noack, J., Huttman, G. & Paltauf, G. Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl. Phys. B 81, 1015-1047 (2005).
57. A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
58. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219-225 (2008).
59. J. Bewersdorf, R. Pick, and S. W. Hell, “Multifocal multiphoton microscopy,” Opt. Lett. 23, 655-657 (1998).
60. P. J. Keller, A. D. Schmidt, J. Wittbrodt, E. H. K. Stelzer, “Reconstruction of Zebrafish Early Embryonic Development by Scanned Light Sheet Microscopy,” Science 14, 1065-1069 (2008).
61. T. V. Truong, W. Supatto, D. S. Koos, J. M. Choi, and S. E. Fraser, “Deep and fast live imaging with two-photon scanned light-sheet microscopy,” Nat. Methods 8, 757-760 (2011).
62. D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and Chris Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17, 13354-13364 (2009).
63. K. Wang and C. Xu, “Tunable high-energy soliton pulse generation from a large-mode-area fiber and its application to third harmonic generation microscopy,” Appl. Phys. Lett. 99, 071112-1-3 (2011).
64. C. Xu and F. W. Wise, “Recent advances in fibre lasers for nonlinear microscopy,” Nat. Photon. 7, 875-882 (2013).
65. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82-87 (2000).
66. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102, 13081-13086 (2005).
67. P. Kner, B. B Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6, 339-342 (2009).
68. L.-C. Cheng, C.-H. Lien, Y. D. Sie, Y. Y. Hu, C.-Y. Lin, F.-C. Chien, C. Xu, C. Y. Dong, and S.-J. Chen, “Nonlinear structured-illumination enhanced temporal focusing multiphoton excitation microscopy with a digital micromirror device,” Biomed. Opt. Express 5, 2526-2536 (2014).
69. J. Mertz and J. Kim, “Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection,” J. Biomed. Opt. 15, 016027 (2010).
70. J. Michaelson, H. Choi, P. So, and H. Huang, “Depth-resolved cellular microrheology using HiLo microscopy,” Biomed. Opt. Express 3, 1241-1255 (2012).
71. H. Choi, E. Y. S. Yew, B. Hallacoglu, S. Fantini, C. J. R. Sheppard, and P. T. C. So, “Improvement of axial resolution and contrast in temporally focused widefield two-photon microscopy with structured light illumination,” Biomed. Opt. Express 4, 995-1005 (2013).
72. M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103, 17137-17142 (2006).
73. N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7, 141-147 (2010).
74. C.-Y. Chang, B.-T. Ke, H.-W. Su, W.-C. Yen, and S.-J. Chen, “Easily implementable field programmable gate array-based adaptive optics system with state-space multichannel control,” Rev. Sci. Instrum. 84, 095112 (2013).
75. M. J. Booth, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A. 99, 5788-5792 (2002).
76. W. Lubeigt, S. P. Poland, G. J. Valentine, A. J. Wright, J. M. Girkin, and D. Burns, “Search-based active optic systems for aberration correction in time-independent applications,” Appl. Opt. 49, 307-314 (2010).
77. H. Dana and S. Shoham, “Numerical evaluation of temporal focusing characteristics in transparent and scattering media,” Opt. Express 19, 4937-4948 (2011).
78. P. Kner, J. W. Sedat, D. A. Agard, and Z. Kam, “High-resolution wide-field microscopy with adaptive optics for spherical aberration correction and motionless focusing,” J. Microsc. 237, 136-147 (2010).
79. O. Azucena, J. Crest, S. Kotadia, W. Sullivan, X. Tao, M. Reinig, D. Gavel, S. Olivier, and J. Kubby, “Adaptive optics wide-field microscopy using direct wavefront sensing,” Opt. Lett. 36, 825-827 (2011).
80. O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5, 372-377 (2011).
81. D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, 372-377 (2011).
82. O. Azucena, J. Crest, J. Cao, W. Sullivan, P. Kner, D. Gavel, D. Dillon, S. Olivier, and J. Kubby, “Wavefront aberration measurements and corrections through thick tissue using fluorescent microsphere reference beacons,” Opt. Express 18, 17521-17532 (2010).
83. R. Aviles-Espinosa, J. Andilla, R. Porcar-Guezenec, O. E. Olarte, M. Nieto, X. Levecq, D. Artigas, and P. Loza-Alvarez, “Measurement and correction of in vivo sample aberrations employing a nonlinear guide-star in two photon excited fluorescence microscopy,” Biomed. Opt. Express 2, 3135-3149 (2011).
84. A. J. Wright, S. P. Poland, J. M. Girkin, C. W. Freudiger, C. L. Evans, and X. S. Xie, “Adaptive optics for enhanced signal in CARS microscopy,” Opt. Express 15, 18209-18219 (2007)
85. D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett. 34, 2495-2497 (2009).
86. A. Facomprez, E. Beaurepaire, and D. Débarre, “Accuracy of correction in modal sensorless adaptive optics,” Opt. Express 20, 2598-2612 (2012).
87. A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and Multiphoton microscopy,” Microsc. Res. Tech. 67, 36-44 (2005).
88. I. Veilleux, Towards All Optical Functional Imaging of Neuronal Cells. Development of a Video Rate Multimodal Laser Scanning Microscope, Master Thesis, Université Laval, Canada (2008).
89. C. Xu and W. W. Webb, Multiphoton excitation of molecular fluorophores and nonlinear laser microscopy. Topics in Fluorescence Spectroscopy, Vol. 5: Nonlinear and Two-Photon-Induced Fluorescence. (ed. J. Lakowicz), 471-540 (Plenum Press, New York, 1997).
90. P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2, 399-429 (2000).
91. A. Diaspro, G. Chirico, and M. Collini, “Two-photon fluorescence excitation and related techniques in biological microscopy,” Q. Rev. Biophys. 38, 97-166 (2005).
92. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2, 932-940 (2005).
93. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001).
94. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662-664 (1986).
95. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659-661 (1986).
96. N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photonic Tech. L. 11, 325-327 (1999).
97. A. Ortigosa-Blanch, J. C. Knight, and P. St. J. Russell, “Pulse breaking and supercontinuum generation with 200-fs pump pulses in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 2567-2572 (2002).
98. M. G. Banaee and Jeff F. Young, “High-order soliton breakup and soliton self-frequency shifts in a microstructured optical fiber,” J. Opt. Soc. Am. B 23, 1484-1489 (2006).
99. D. A. Sipkins, X. Wei, J. W. Wu, J. M. Runnels, D. Côté, T. K. Means, A. D. Luster, D. T. Scadden, and C. P. Lin, “In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment,” Nature 435, 969-973 (2005).
100. A. Schajnovitz, T. Itkin, G. D'Uva, A. Kalinkovich, K. Golan, A. Ludin, D. Cohen, Z. Shulman, A. Avigdor, A. Nagler, O. Kollet, R. Seger, and T. Lapidot, “CXCL12 secretion by bone marrow stromal cells is dependent on cell contact and mediated by connexin-43 and connexin-45 gap junctions,” Nat. Immunol. 12, 391-398 (2011).
101. H. Choi, D. S. Tzeranis, J. W. Cha, P. Clémenceau, S. J. G. de Jong, L. K. van Geest, J. H. Moon, I. V. Yannas, and P. T. C. So, “3D-resolved fluorescence and phosphorescence lifetime imaging using temporal focusing wide-field two-photon excitation,” Opt. Express 20, 26219-26235 (2012).
102. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts and Company Publishers, 2004).
103. E. Papagiakoumou, V. de Sars, D. Oron, and V. Emiliani, “Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses,” Opt. Express 16, 22039-22047 (2008).
104. D. Kim and P. T. C. So, “High-throughput three-dimensional lithographic microfabrication,” Opt. Lett. 35, 1602-1604 (2010).
105. J.-N. Yih, Y. Y. Hu, Y. D. Sie, L.-C. Cheng, C.-H. Lien, and S.-J. Chen, “Temporal focusing-based multiphoton excitation microscopy via digital micromirror device,” Opt. Lett. 39, 3134-3137 (2014).
106. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley-Interscience, 2007).
107. D. Yelin, D. Meshulach, and Y. Silberberg, “Adaptive femtosecond pulse compression,” Opt. Lett. 22, 1793-1795 (1997).
108. E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, “Pulse compression by use of deformable mirrors,” Opt. Lett. 24, 493-495 (1999).
109. E. Zeek, R. Bartels, M. M. Murnane, H. C. Kapteyn, S. Backus, and G. Vdovin, “Adaptive pulse compression for transform-limited 15-fs high-energy pulse generation,” Opt. Lett. 25, 587-589 (2000).
110. S. Bonora, D. Brida, P. Villoresi, and G. Cerullo, “Ultrabroadband pulse shaping with a push-pull deformable mirror,” Opt. Express 18, 23147-23152 (2010).
111. A. Straub, M. E. Durst, and C. Xu, “High speed multiphoton axial scanning through an optical fiber in a remotely scanned temporal focusing setup,” Biomed. Opt. Express 2, 80-88 (2011).
112. C.-Y. Chang, L.-C. Cheng, H.-W. Su, Y. Y. Hu, K.-C. Cho, W.-C. Yen, C. Xu, C. Y. Dong, and S.-J. Chen, “Wavefront sensorless adaptive optics temporal focusing-based multiphoton microscopy,” Biomed. Opt. Express 5, 1768-1777 (2014).
113. R. A. Muller and A. Buffington, “Real-time correction of atmospherically degraded telescope images through image sharpening,” J. Opt. Soc. Am. 64, 1200-1210 (1974).
114. R. Irwan and R. G. Lane, “Analysis of optimal centroid estimation applied to Shack–Hartmann sensing,” Appl. Opt. 38, 6737-6743 (1999).
115. S.-H. Baik, S.-K. Park, C.-J. Kim, and B. Cha, “A center detection algorithm for Shack–Hartmann wavefront sensor,” Opt. Las. Technol. 39, 262-267 (2007).
116. G.-M. Dai, “Model wave-front reconstruction with Zernike polynomials and Karhunen–Loève functions,” J. Opt. Soc. Am. A 13, 1218-1225 (1996).
117. P. A. Bakut, V. E. Kirakosyants, V. A. Loginov, C. J. Solomon, and J. C. Dainty, “Optimal wavefront reconstruction from a Shack-Hartmann sensor by use of a Bayesian algorithm,” Opt. Commun. 109, 10-15 (1994).
118. R. C. Cannon, “Global wave-front reconstruction using Shack-Hartmann sensors” J. opt. Soc. Am. A 12, 2031-2039 (1995).
119. S. Tuohy and A. G. Podoleanu, “Depth-resolved wavefront aberrations using a coherence-gated Shack-Hartmann wavefront sensor,” Opt. Express 18, 3458-3476 (2010).
120. A. Polo, V. Kutchoukov, F. Bociort, S. F. Pereira, and H. P. Urbach, “Determination of wavefront structure for a Hartmann wavefront sensor using a phase-retrieval method,” Opt. Express 20, 7822-7832 (2012).
121. A. M. Nightingale and S. Gordeyev, “Shack-Hartmann wavefront sensor image analysis: a comparison of centroiding methods and image-processing techniques,” Opt. Eng. 52, 071413 (2013).
122. J. Suzuki and T. Ando, “High-frame rate Shack Hartmann wavefront sensor based on flexible read-out technique for C-MOS image sensor,” Proc. SPIE 8395, 83950I (2012).
123. M. Xia, C. Li, L. Hu, Z. Cao, Q. Mu, and L. Xuan, “Shack-Hartmann wavefront sensor with large dynamic,” J. Biomed. Opt. 15, 026009 (2010).
124. A. Chernyshov, U. Sterr, F. Riehle, J. Helmcke, and J. Pfund, “Calibration of a Shack-Hartmann sensor for absolute measurements of wavefronts,” Appl. Opt. 44, 6419-6425 (2005).
125. J. Yang, L. Wei, H. Chen, X. Rao, and C. Rao, “Absolute calibration of Hartmann-Shack wavefront sensor by spherical wavefronts,” Opt. Commun. 282, 910-916 (2010).
126. M. Thier, R. Paris, T. Thurner, and G. Schitter, “Low-latency Shack–Hartmann wavefront sensor based on an industrial smart camera,” IEEE Trans. Instrum. Meas. 62, 1241-1249 (2013).
127. D. R. Neal, J. Copland, and D. Neal, “Shack-Hartmann wavefront sensor precision and accuracy,” Proc. SPIE 4779, 148-160 (2002).
128. C. Curatu, G. Curatu, and J. Rolland, “Fundamental and specific steps in Shack-Hartmann wavefront sensor design,” Proc. SPIE 6288, 628801 (2006).
129. C. Li, M. Xia, Z. Liu, D. Li, and L. Xuan, “Optimization for high precision Shack-Hartmann wavefront sensor,” Opt. Commun. 282, 4333-4338 (2009).
130. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1970).
131. M. Rueckel and W. Denk, “Coherence-gated wavefront sensing using a virtual Shack-Hartmann sensor,” Proc. SPIE 6306, 63060H (2006).
132. M. M. A. Neil, M. J. Booth, and T. Wilson, “New modal wave-front sensor: a theoretical analysis,” J. Opt. Soc. Am. A 17, 1098-1107 (2000).
133. M. M. A. Neil, M. J. Booth, and T. Wilson, “closed-loop aberration correction by use of a modal Zernike wave-front sensor,” Opt. Lett. 25, 1083-1185 (2000).
134. M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatch media,” J. Microsc. 192, 90-98 (1998).
135. Z. Kam, P. Kner, D. Agard, and J. W. Sedat, “Modelling the application of adaptive optics to wide-field microscope live imaging,” J. Microsc. 226, 33-42 (2006).
136. M. A. Vorontsov, G. W. Carhart, and J. C. Ricklin, “Adaptive phase-distortion correction based on parallel gradient-descent optimization,” Opt. Lett. 22, 907-909 (1997).
137. P. V. Overschee and B. D. Moor, “N4SID: Subspace algorithms for the identification of combined deterministic and stochastic systems,” Automatica 30, 75-93 (1994).
138. J.-N. Juang and M. Q. Phan, Identification and Control of Mechanical Systems (Cambridge University Press, 2001).
139. D. P. Looze, “Discrete-time model of an adaptive optics system,” J. Opt. Soc. Am. A 24, 2850-2863 (2007).
140. P. C. Young and J. C. Willems, “An approach to the linear multivariable servomechanism problem,” Int. J. Control 15, 961-979 (1972).
141. E. J. Davison and I. J. Ferguson, “The design of controllers for the multivariable robust servomechanism problem using parameter optimization methods,” IEEE Trans. Autom. Control 26, 93-110 (1981).
142. T. Katayama, T. Ohki, T. Inoue, and T. Kato, “Design of an optimal controller for a discrete-time system subject to previewable demand,” Int. J. Control 41, 677-699 (1985).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-12-10起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-12-10起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw