進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2008202023471600
論文名稱(中文) 現生微生物岩的形成之環境因素探討:以墾丁疊層石為例
論文名稱(英文) Explore the Formation Mechanism of Modern Microbialites in Kenting, Taiwan
校院名稱 成功大學
系所名稱(中) 地球科學系
系所名稱(英) Department of Earth Sciences
學年度 108
學期 2
出版年 109
研究生(中文) 黃瑞儀
研究生(英文) Jui-Yi Huang
學號 L46071188
學位類別 碩士
語文別 英文
論文頁數 63頁
口試委員 指導教授-梁碧清
口試委員-張詠斌
口試委員-劉少倫
中文關鍵字 微生物岩  墾丁  現生疊層石  傅立葉轉換紅外光譜 
英文關鍵字 microbialite  stromatolite  Kenting  FTIR 
學科別分類
中文摘要 微生物岩是透過附著在周圍水環境中的底棲微生物群落和沉積物之間交互作用,藉由吸附、捕獲沉積物、無機礦物沉澱及有機質礦物共沉澱的過程,形成一個累積的既有沉積物又有有機質的宏觀結構。因此,微生物岩特別是疊層石在記錄地球上早期生物圈的微生物活動、沉積過程、礦化歷史,以及解析自然環境和生物隨時間的變化及交互作用發揮重要的作用。微生物岩的形成一直是生物地質研究領域的一個有趣的課題,但是微生物岩相關的生物地球化學過程還有許多未知的機理需要被探討。現生微生物岩,為探討及追朔古代疊層石的形成條件和古地質環境、古氣候條件提供了珍貴的研究材料和模型。本研究專注於台灣南部的墾丁微生物岩,並利用其中現生疊層石為材料,探討疊層石形成的環境及條件。本研究藉由在野外宏觀尺度調查以及在實驗室微觀結構觀察,嘗試描述現生微生物岩的種類、生物質光譜特徵,探討不同微生物岩的形成環境和地質條件,並提出現生疊層石在台灣的形成機制。實驗利用同步加速光耦合的傅立葉轉換紅外光譜(FTIR)等來探測微生物質和礦物質的特性。光譜結果顯示潮間帶、潮上帶的現生微生物岩都以碳酸鹽為主要礦物,碳酸岩訊號極強,有限的生物質訊號以脂肪類訊號為主。潮間帶的現生疊層石生物質訊號較強,指向相對豐富的微生物的群落和活動。不同地點的現生疊層石和凝灰岩的有機質訊號都相類似,間接指向墾丁微生物岩微生物群落及生物質具有一定的相似性。野外調查,採集潮間帶及潮上帶的野外樣品並分析現地環境因素,包括pH,鹽度,陽離子和陰離子含量,及無機碳和有機碳含量等。藉由整合現地和實驗數據,可以看出碳酸鹽海階抬升的徑流水為潮間帶的微生物特別是光合細菌帶來豐富的鈣、碳酸根及碳酸氫根離子和硝酸鹽等,為光合細菌的生長和疊層石的發育提供長期的營養來源。台灣墾丁沿岸海水是個寡營養、高風化的環境。台灣南部墾丁地區更新世碳酸鹽台地、高風化作用帶來的沉積物為現生疊層石提供了有利的環境,然而強烈的風蝕海蝕侵蝕作用及不穩定的潮間帶環境也可能破壞現生疊層石在長時間尺度上有序的堆積,使得現生疊層石在只有淺層的發育,並且只在數公里的小範圍區域(風吹砂)有被發現。由此推測,疊層石的形成除了具有競爭性的微生物族群和光合細菌,現地的環境因素也是重要條件。
英文摘要 Microbialites are organosedimentary deposit through trapping and binding of sediments and mineral precipitation by the benthic microbial communities in surrounding water environment. Consequently, modern microbialites can play an important role in probing the mineralized record of the early biosphere on Earth and deciphering the complicated physical, chemical, and biological interactions across time in natural environments. The formation of microbialite has been an interesting study topics in various research fields. Most of the literatures used the fossilized microbialites, which have existed on earth for a long time to backtrack and project their forming environment and geological settings, though the nature of related biogeochemical process remained obscure. Past research of “microbialites” in Taiwan has mainly focused on coral reefs, locating in southern Taiwan. However, we gear our research focus on modern microbiliates based on definitions instead of coral reefs. There is little research on Taiwan’s modern microbialites up to today, and discussion of fossilized microbialites is rare in Taiwan due to a young stratum on the geological temporal scale.
Therefore, the purpose of this study is to describe the forming environment and geological settings of modern microbialite, which morphologically resembles stromatolite, and to propose a forming mechanism of these modern microbiatlite in Taiwan, by observing their macro and micro structure in field and in lab. The property of microbial biomass and minerals are probed using synchrotron-based spectroscopy including Fourier-transform infrared spectroscopy (FTIR) etc. The environmental factors including pH, salinity, cation and anion content, total inorganic carbon content etc, were analyzed using field samples. Field and lab data were integrated to dissociate the interacting factor of modern microbialite formation in Kenting, Taiwan. The organic signals of stromatolites are higher in the intertidal zone than that in the supratidal zone, probably due to higher enrichment of cyanobacteria in the mat layer. Stromatolites are mainly found in the intertidal zone and thrombolites are often found in the supratidal zone. Rare repeative alternating dark and light layers and thick mat are observed in Kenting stromatolite, possibly due to the high weathering environment. The microbialites formation are closely related to site or location specific environment and nutrient conditions over time. We proposed that the high weathering and high decomposition environment may have limited the accumulation and large-scale forming of microbialite and stromatolite in Kenting.
論文目次 Table of contents
Abstract---------------------------------------------------------------------------------------- I
摘要------------------------------------------------------------------------------------------- III
致謝------------------------------------------------------------------------------------------- IV
Table of contents --------------------------------------------------------------------------- V
List of Tables ----------------------------------------------------------------------------- VII
List of Figures ---------------------------------------------------------------------------- VII

1. Introduction -------------------------------------------------------------------------- 1
1.1 Microbialites ------------------------------------------------------------------- 1
1.2 Definition and classification ------------------------------------------------------ 3
1.2.1 Leiolites ----------------------------------------------------------------- 3
1.2.2 Dendrolites ------------------------------------------------------------- 4
1.2.3 Stromatolites ----------------------------------------------------------- 5
1.2.4 Thrombolites ----------------------------------------------------------- 6
1.3 The formation mechanism -------------------------------------------------------- 7
2. Materials and methods ----------------------------------------------------------------- 10
2.1 Field area ---------------------------------------------------------------------- 10
2.2 Sample preparation --------------------------------------------------------- 19
2.2.1 Solid samples ----------------------------------------------------------- 19
2.2.2 Water samples ---------------------------------------------------------- 20
2.3 Analytical Approaches ------------------------------------------------------ 20
3. Results ------------------------------------------------------------------------- 21
3.1 Microbial morphologies --------------------------------------------------- 21
3.2 Classification ---------------------------------------------------------------- 24
3.2.1 Thrombolite ----------------------------------------------------------- 24
3.2.2 Stromatolite ------------------------------------------------------------ 26
3.2.3 Stromatolite and thrombolites co-existences ---------------------- 28
3.3 The field water environmental data --------------------------------------- 29
3.3.1 The carbon concentration of field water samples ----------------- 29
3.3.2 The field pH and salinity data -------------------------------------- 31
3.3.3 The nitrate and nutrient contents in field sample ---------------------- 31
3.3.4 The bicarbonate and carbonate content in water sample ------------- 32
3.4 The property of thrombolite and stromatolite with FTIR ---------------- 34
4. Discussions ------------------------------------------------------------------------------- 42
4.1 The microbial community and dominant cyanobacteria for forming the microbialites ---------------------------------------------------------------------------- 42
4.2 Environmental factors and field water ------------------------------------------------- 42
4.2.1 Salinity ---------------------------------------------------------------------- 42
4.2.2 Inorganic carbon and nitrate nutrients ---------------------------------- 42
4.3 The properties of the microbialites --------------------------------------------- 43
5. Conclusions -------------------------------------------------------------------------- 44
6. References ------------------------------------------------------------------------------- 45
6.1 Chinese ----------------------------------------------------------------------------- 45
6.2 English ------------------------------------------------------------------------------ 45
7. Supplementary data -------------------------------------------------------------------- 51
參考文獻 6.1 Chinese
王士偉, 劉少倫, 王瑋龍, 黃興倬 (2019). 108年度墾丁國家公園疊層石與包殼粒分布及共域生物調查計畫
王鑫 (2009). 墾丁國家公園地形景觀簡介:墾丁國家公園解說教育叢書之八
陳惠芬 (2009). 墾丁國家公園地質景觀簡介:墾丁國家公園解說教育叢書
6.2 English
Burne, R.V. and Moore, L.S. (1987). Microbialites: organosedimentary deposits of benthic microbial communities. PALAIOS 2, 241-254.
Riding, R. (2011). Microbialites, stromatolites, and thrombolites. Encyclopedia of geobiology M, pp. 635-654.
Riding, R. (2000). Microbial carbonates: the geological record of calcified bacterial–algal mats and biofilms. Sedimentology 47, 179-214.
Aitken, J.D. (1967). Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of southwestern Alberta. Journal of Sedimentary Research 37, 1163-1178.
Kennard, J.M. and James, N.P. (1986). Thrombolites and Stromatolites Two Distinct Types of Microbial Structures. PALAIOS 1, 492-503.
Buongiorno, J., Gomez, F.J., Fike, D.A. and Kah, L.C. (2019). Mineralized microbialites as archives of environmental evolution, Laguna Negra, Catamarca Province, Argentina. Geobiology 17, 199-222.
Gomez, F.J., Kah, L.C., Bartley, J.K. and Astini, R.A. (2014). Microbialites in a high-altitude andean lake: multiple controls on carbonate precipitation and lamina accretion. PALAIOS 29, 233-249.
Moore, L. S. and Burne, R.V. (1994). The modern thrombolites of Lake Clifton, western Australia. Phanerozoic stromatolites II, pp. 3-29.
Dupraz, C., Reid, R.P. and Visscher, P.T. (2011). Microbialites, modern. Encyclopedia of Geobiology M, pp. 617-635.
Ferris, F. G., Thompson, J.B. and Beveridge, T.J. (1997). Modern freshwater microbialites from Kelly Lake, British Columbia, Canada. PALAIOS 12, 213-219.
Flügel, E. (2013). Microfacies of carbonate rocks: analysis, interpretation and application, Springer Science & Business Media, pp. 369-398.
Huang, W.S., Jien, S.H., Tsai, H., Hseu, Z.Y. and Huang, S.T. (2016). Soil evolution in a tropical climate: An example from a chronosequence on marine terraces in Taiwan. Catena 139, 61-72.
Nahle, Nasif. 2008. Marine Environments. ©Biology Cabinet Organization. from http:www.biocab.org/Marine_Environments.html
Chang, Y.C., Hong, F.W. and Lee, M.T. (2008). A system dynamic based DSS for sustainable coral reef management in Kenting coastal zone, Taiwan. Ecological Modelling 211, 153-168.
Chen, C.A., Yang, Y.W., Wei, N.V., Tsai, W.S. and Fang, L.S. (2005). Symbiont diversity in scleractinian corals from tropical reefs and subtropical non-reef communities in Taiwan. Coral Reefs 24, 11-22.
Dai, C.F. (1991). Reef environment and coral fauna of southern Taiwan. Atoll Research Bulletin 354,1-24.
Braga, J.C., Martin, J.M. and Riding, R. (1995). Controls on microbial dome fabric development along a carbonate-siliciclastic shelf-basin transect, Miocene, SE Spain. PALAIOS 10, 347-361.
Mlewski, E.C., Pisapia, C., Gomez, F., Lecourt, L., Rueda, S.E., Benzerara, K., Ménez, B., Borensztajn, S., Jamme, F., Réfrégiers, M. and Gérard, E. (2018). Characterization of Pustular Mats and Related Rivularia-Rich Laminations in Oncoids From the Laguna Negra Lake (Argentina). Frontiers in Microbiology 9, 996-1018.
Zeyen, N., Benzerara, K., Li, J., Groleau, A., Balan, E., Louis, J.R., Estève, I., Tavera, R., Moreira, D. and García, L.P. (2015). Formation of low-T hydrated silicates in modern microbialites from Mexico and implications for microbial fossilization. Frontiers in Earth Science 3, 64-86.
Mastandrea, A., Guido, A., Demasi, F., Ruffolo, A.S. and Russo, F. (2011). The characterisation of sedimentary organic matter in carbonates with Fourier-transform infrared (FTIR) spectroscopy. Advances in Stromatolite Geobiology, Springer, pp. 331-342.
Orcel, G., Phalippou, L. and Hench, C.C. (1986). Structural changes of silica xerogels during low temperature dehydration. Journal of Non-Crystalline Solids 88, 114-130.
Wang, S.H. and Griffiths, P. R. (1985). Resolution enhancement of diffuse reflectance ir spectra of coals by Fourier self-deconvolution: 1. CH stretching and bending modes. Fuels 64, 229-236.
Ramasamy, V., Dheenathayalu, M., Ponnusamy, V., Hemalatha, J. and Presannalakshmi, P. (2003). FTIR-characterisation and thermal analysis of natural calcite and aragonite. Indian Journal of Physics 77, 443-450.
Reig, F.B., Adelantado, J.V.G. and Moreno, M.C.M.M. (2002). FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method. Application to geological samples. Talanta 58, 811-821.
Vaculíková, L., Plevová, E., Vallová, S. and Koutník, I. (2011). Characterization and differentiation of kaolinites from selected Czech deposits using infrared spectroscopy and differential thermal analysis. Acta Geodynamica et Geomaterialia 8, 59-67
Chu, V., Regev, L., Weiner, S. and Boaretto, E. (2008). Differentiating between anthropogenic calcite in plaster, ash and natural calcite using infrared spectroscopy: implications in archaeology. Journal of Archaeological Science 35, 905-911.
Chen, Y.G. and Liu, T.K. (2000). Holocene uplift and subsidence along an active tectonic margin southwestern Taiwan. Quaternary Science Reviews 19, 923-930.
Laval, B., Cady, S.L., Pollack, J.C., McKay, C.P., Bird, J.S., Grotzinger, J.P., Ford, D.C. and Bohm, H.R. (2000). Modern freshwater microbialite analogues for ancient dendritic reef structures. Nature 407, 626-629.
Feldmann, M. and McKenzie, J. A. (1998). Stromatolite-thrombolite associations in a modern environment, Lee Stocking Island, Bahamas. PALAIOS 13, 201-212
Suosaari, E.P., Awramik, S.M., Reid, R.P., Stolz, J.F. and Grey, K. (2018). Living dendrolitic microbial mats in hamelin pool, Shark Bay, Western Australia. Geosciences 8, 212.
Vaculíková, L. and Plevová, E. (2005). Identification of clay minerals and micas in sedimentary rocks. Acta Geodynamica et Geomaterialia 2, 167-175.
Chakrabarty, D. and Mahapatra, S. (1999). Aragonite crystals with unconventional morphologies. Journal of Materials Chemistry 9, 2953-2957.
Ahn, D.J., Berman, A. and Charych, D. (1996). Probing the dynamics of template-directed calcite crystallization with in situ FTIR. ACS Publications 100, 12455-12461.
Schmitt, J., Nivens, D., White, D.C. and Flemming, H.C. (1995). Changes of biofilm properties in response to sorbed substances-an FTIR-ATR study. Water Science and Technology 32, 149-155.
Gómez-Ordóñez, E. and Rupérez, P. (2011). FTIR-ATR spectroscopy as a tool for polysaccharide identification in edible brown and red seaweeds. Food hydrocolloids 25, 1514-1520.
Subudhi, S., Bisht, V., Batta, N., Pathak, M., Devi, A., Lal, B. (2016). Purification and characterization of exopolysaccharide bioflocculant produced by heavy metal resistant Achromobacter xylosoxidans. Carbohydrate Polymers 137, 441-451.
Arp, G., Reimer, A., Reitner, J. (2003). Microbialite formation in seawater of increased alkalinity, Satonda Crater Lake, Indonesia. Journal of sedimentary research 73, 105-127.
Kempe, S., Kazmierczak, J., Landmann, G., Konuk, T., Reimer, A., and Lipp, A. (1991). Largest known microbialites discovered in Lake Van, Turkey. Nature 349, 605-608.
Benzerara, K., Menguy, N., García, P.L., Yoon, T.H., Kazmierczak, J., Tyliszczak, T., Guyot, F. and Jr. Brown, G. E. (2006). Nanoscale detection of organic signatures in carbonate microbialites. Proceedings of the National Academy of Sciences 103, 9440-9445.
George, S. (2001). Infrared and Raman characteristic group frequencies: tables and charts. Wiley, New Jersey. pp. 50-67
Pozefsky, A. and Coggeshall, N. (1951). Infrared absorption studies of carbon-hydrogen stretching frequencies in sulfurized and oxygenated materials. Analytical Chemistry 23, 1611-1619.
Pismenskaya, N., Laktionov, E., Nikonenko, V., El Attar, A., Auclair, B. and Pourcelly, G. (2020). Dependence of composition of anion-exchange membranes and their electrical conductivity on concen-V. Journal of Membrane Science 181, 185-197.
Igisu, M., Ueno, Y., Shimojima, M., Nakashima, S., Awramik, M.S., Ohta, H. and Maruyama, S. (2009). Micro-FTIR spectroscopic signatures of bacterial lipids in Proterozoic microfossils." Precambrian Research 173, 19-26.
Matrajt, G., Borg, J., Raynal, P.I., Djouadi, Z., d'Hendecourt, L., Flynn, G. and Deboffle, D. (2004). FTIR and Raman analyses of the Tagish Lake meteorite: Relationship with the aliphatic hydrocarbons observed in the diffuse interstellar medium." Astronomy & Astrophysics 416, 983-990.
SHIMADZU. TOC principle. from https://www.shimadzu.com/an/toc/lab/toc-l/features.html.
Taira, K. (1976). A wave-like pattern of Holocene crustal warping in eastern Asia." Palaeogeography, Palaeoclimatology, Palaeoecology 19, 249-254.
Freytet, P. and A. Plet (1996). Modern freshwater microbial carbonates: thePhormidium stromatolites (tufa-travertine) of southeastern Burgundy (Paris Basin, France). Facies 34, 219.
Paul, J., Peryt, T.M., Burne, R.V. (2011). Kalkowsky’s stromatolites and oolites (Lower Buntsandstein, northern Germany) Advances in stromatolite Geobiology, Springer, pp. 13-28.
Reid, R. P., Foster, J.S., Radtke, G. and Golubic, S. (2011). Modern marine stromatolites of Little Darby Island, Exuma Archipelago, Bahamas: environmental setting, accretion mechanisms and role of euendoliths. Advances in stromatolite geobiology, Springer, pp. 77-89.
Awramik, S.M. and Grey, K. (2020). Handbook for The Study and Description of Microbialites, Geological Survey of Western Australia.
Bosak, T., Liang, B., Wu, T.D., Templer, S.P., Evans, A., Vali, H., Guerquin-Kern, J.L., Klepac-Ceraj, V., Sim, M.S. and Mui, J. (2012). Cyanobacterial diversity and activity in modern conical microbialites. Geobiology 10, 384-401.
Bernhard, J.M., Edgcomb, V.P., Visscher, P.T., McIntyre-Wressnig, A., Summons, R.E., Bouxsein, M.L., Louis, L. and Jeglinski, M. (2013). Insights into foraminiferal influences on microfabrics of microbialites at Highborne Cay, Bahamas. Proceedings of the National Academy of Sciences 110, 9830-9834.
Dupraz, C., Reid, R.P., Braissant, O., Decho, A.W., Norman, R.S. and Visscher, P.T. (2009). Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews 96, 141-162.
Mobberley, J.M., Khodadad, C.L.M. and Foster, J.S. (2013). Metabolic potential of lithifying cyanobacteria-dominated thrombolitic mats." Photosynthesis research 118,125-140.
Gérard, E., Ménez, B., Couradeau, E., Moreira, D., Benzerara, K., Tavera, R. and López-García, P. (2013). Specific carbonate–microbe interactions in the modern microbialites of Lake Alchichica (Mexico). The ISME Journal 7, 1997-2009.
Rishworth, G.M., Perissinotto, R., Bornman, T.G. and Lemley, D.A. (2017). Peritidal stromatolites at the convergence of groundwater seepage and marine incursion: patterns of salinity, temperature and nutrient variability. Journal of Marine Systems 167, 68-77.
Mobberley, J.M., Ortega, M.C. and Foster, J.S. (2012). Comparative microbial diversity analyses of modern marine thrombolitic mats by barcoded pyrosequencing. Environmental microbiology 14, 82-100.
Dupraz, C. and Visscher, P.T. (2005). Microbial lithification in marine stromatolites and hypersaline mats. Trends in microbiology 13, 429-438.
Stolz, J.F. (2000). Structure of microbial mats and biofilms. Microbial sediments, Springer, pp. 1-8.
Friedman, G.M. (1964). Early diagenesis and lithification in carbonate sediments. Journal of sedimentary research 34, 777-813.
Guido, A., Mastandrea, A. and Russo, F. (2013). Biotic vs abiotic carbonates: characterisation of the fossil organic matter with Fourier-Transform Infrared (FT-IR) Spectroscopy. Bollettino della Societ a Paleontologica Italiana 52, 63-70.
Guido, A., Mastandrea, A., Demasi, F., Tosti, F. and Russo, F. (2012). Organic matter remains in the laminated microfabrics of the Kess-Kess mounds (Hamar Laghdad, Lower Devonian, Morocco). Sedimentary Geology 263, 194-201.
Sprachta, S., Camoin, G., Golubic, S., Le Campion, Th. (2001). Microbialites in a modern lagoonal environment: nature and distribution, Tikehau atoll (French Polynesia). Palaeogeography, Palaeoclimatology, Palaeoecology 175, 103-124.
A. Yanez-Montalvo, S. Gómez-Acata, B. Águila, H. Hernández-Arana, L. Falcón (2020). The microbiome of modern microbialites in Bacalar Lagoon, Mexico.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-08-20起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-08-20起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw