進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2008202013404100
論文名稱(中文) 牛血清蛋白包覆的金奈米團簇於兒茶酚類似物之檢測及其反應機制
論文名稱(英文) Bovine Serum Albumin-Protected Gold Nanoclusters for the Detection of Catechol Analogues and Sensing Mechanism
校院名稱 成功大學
系所名稱(中) 化學系
系所名稱(英) Department of Chemistry
學年度 108
學期 2
出版年 109
研究生(中文) 歐盈如
研究生(英文) Ying-Ru Ou
學號 L36074281
學位類別 碩士
語文別 中文
論文頁數 90頁
口試委員 指導教授-陳淑慧
口試委員-戴榮湘
口試委員-梁世欣
口試委員-徐睿良
中文關鍵字 牛血清蛋白  金奈米團簇  檢測應用  兒茶酚 
英文關鍵字 bovine serum albumin  gold nanocluster  sensor  catechol 
學科別分類
中文摘要 近年來以蛋白質為基板合成之金奈米團簇因其獨特的光學性質、良好的生物相容性和水溶性使其廣泛應用於檢測、生物感測和生物成像。在本研究中,我們嘗試以具有紅色螢光放射的牛血清蛋白包覆金奈米團簇檢測兒茶酚類似物。
首先我們使用螢光光譜儀、紫外光可見光近紅外光分光光譜儀、基質輔助雷射脫附游離飛行式質譜儀和化學分析電子光譜儀鑑定牛血清蛋白包覆金奈米團簇的光學性質、質量及組成型態,其整體質量約為71.3 kDa,且以350 nm激發則會放出635 nm的紅色螢光。
將兒茶酚類似物氧化為鄰苯醌的部分,我分別使用鐵離子(Fe3+)催化兒茶酚類似物、放置於溶液中使其自然氧化的兩種方法,再與牛血清蛋白包覆金奈米團簇反應,發現到不同的螢光的淬滅情形。而後再藉由螢光、UV吸收光譜的偵測結果及蛋白質體學中由下而上的分析方法,推測出使用鐵離子催化兒茶酚類似物造成的螢光淬滅,其機制為牛血清蛋白包覆金奈米團簇與兒茶酚類似物-鐵離子錯合物之間的螢光共振能量轉移;使兒茶酚類似物自然氧化的部分則是因為4-羥雌二醇 (4OHE2) 對於牛血清蛋白基板有較強的親和力,對牛血清蛋白包覆金奈米團簇的高比例修飾改變了螢光團結構及可能改變電子返回基態的路徑進而淬滅螢光。最後藉由螢光搭配UV吸收光譜的方法,牛血清蛋白包覆金奈米團簇可以對於兒茶酚類似物達到專一性的檢測,並應用於檢測食用油中的抗氧化劑(沒食子酸丙酯)。
英文摘要 In the past decade, protein-protected gold nanoclusters have been widely used in detection, biosensing and bioimaging because of their unique optical properties, good biocompatibility and water solubility. In this study, we tried to detect catechol analogues by the red bovine serum albumin-protected gold nanoclusters (BSA-AuNCs).
First, we used fluorescence spectrometer, UV–vis spectrophotometer, matrix-assisted laser desorption ionization-time of flight and electron spectroscopy for chemical analysis to identify the optical properties, quality and composition of BSA-AuNCs. MALDI-MS spectra showed a broad peak at a maximum of 71.3 kDa, and the solutions emitted strong red fluorescence when excited by 350 nm.
To oxidize catechol analogues to o-benzoquinone, I used iron ions (Fe3+) to speed up the oxidation process, or placed catechol analogues in a solution to make them oxidize automatically, and then reacted with BSA-AuNCs. I found different fluorescence quenching situations in the two oxidation methods, so I designed experiments to discuss their quenching mechanism. Based on the detection results of fluorescence, UV absorption spectra and bottom-up proteomics analysis, the quenching mechanism in iron ions catalyzing method can be considered as Förster Resonance Energy Transfer between BSA-AuNCs and catechol analogues-iron complex. In automatic oxidization method, the fluorescence of BSA-AuNCs was quenched by 4-hydroxyestradiol (4OHE2). It has higher affinity to BSA-AuNCs, and the high proportion of modification to BSA-AuNCs changes the structure of the fluorophore thereby quenching fluorescence.
Finally, by the method of fluorescence and UV absorption spectroscopy, BSA-AuNCs can achieve specific detection of catechol analogues and be used to detect the antioxidant (propyl gallate) in edible oil.
論文目次 致謝 I
Abstract II
中文摘要 VII
圖摘要 VIII
目錄 IX
圖目錄 XII
表目錄 XV
簡稱用語對應表 XVI
第一章 研究內容 1
1.1. 研究動機 1
1.2. 研究方向 2
第二章 文獻回顧 3
2.1. 牛血清蛋白( bovine serum albumin,BSA ) 3
2.1.1. 蛋白結構 3
2.1.2. 構型變化 4
2.2. 金奈米團簇 (gold nanoclusters,AuNCs) 5
2.2.1. 金奈米團簇製備方法 5
2.2.2. 放光原理 6
2.3. 牛血清蛋白包覆金奈米團簇 8
2.3.1. 合成方法 8
2.3.2. 螢光性質 8
2.3.3. 結構分析 9
2.3.4. 牛血清蛋白包覆金奈米團簇之應用 11
2.4. 兒茶酚類似物 15
2.4.1. 化學特性及毒性 15
2.4.2. 兒茶酚轉變為鄰苯醌的方法 19
2.4.3. 檢測兒茶酚類似物之方法回顧 20
第三章 實驗方法 22
3.1. 實驗藥品與耗材 22
3.1.1. 實驗藥品 22
3.1.2. 實驗耗材與儀器 22
3.2. 合成牛血清蛋白包覆金奈米團簇 24
3.2.1. 合成方法 24
3.2.2. 純化牛血清蛋白包覆金奈米團簇 24
3.3. 基質輔助雷射脫附游離飛行式質譜儀(MALDI-TOF)的樣品製備 25
3.4. 水解酵素法(In solution digestion) 25
3.5. 奈米電噴灑線性離子阱式軌道阱質譜儀 ( LTQ-Orbitrap ) 26
3.6. 樣品性質鑑定之儀器 27
3.7. 以牛血清蛋白金奈米團簇檢測兒茶酚類似物 28
3.7.1. 兒茶酚類似物標準液檢測 28
3.7.2. 以變性水解酵素法分析與兒茶酚類似物反應完之BSA-AuNCs樣品 29
3.7.3. 以BSA-AuNCs檢測真實樣品 30
3.8. 數據分析軟體 32
第四章 結果與討論 33
4.1. 牛血清包覆金奈米團簇的合成後鑑定 33
4.1.1. 紫外光可見光分光光譜儀與螢光光譜儀分析 33
4.1.2. 基質輔助雷射脫附游離飛行式質譜儀(MALDI-TOF)分析 35
4.1.3. 化學分析電子光譜儀(ESCA)鑑定 37
4.2. 以鐵離子催化兒茶酚類似物 40
4.2.1. 兒茶酚轉變為鄰苯醌之鑑定 40
4.2.2. 以牛血清蛋白金奈米團簇檢測兒茶酚類似物 44
4.3. 自然氧化之兒茶酚 47
4.3.1. 兒茶酚轉變為鄰苯醌之鑑定 47
4.3.2. 以牛血清蛋白金奈米團簇檢測兒茶酚類似物 49
4.4. 兒茶酚類似物淬滅BSA-AuNCs螢光之機制探討 51
4.4.1. 以鐵離子催化兒茶酚類似物 53
4.4.2. 自然氧化之兒茶酚 62
4.5. BSA-AuNCs對於兒茶酚類似物之偵測專一性 69
4.6. BSA-AuNCs於真實樣品檢測 71
第五章 結論 74
第六章 參考文獻 76
附錄一 83
附錄二 90
參考文獻 1. Wang, Y.; Chen, J.; Irudayaraj, J., Nuclear targeting dynamics of gold nanoclusters for enhanced therapy of HER2+ breast cancer. ACS nano 2011, 5 (12), 9718-9725.
2. Li, Y.; Huang, H.; Ma, Y.; Tong, J., Highly sensitive fluorescent detection of dihydroxybenzene based on graphene quantum dots. Sensors and Actuators B: Chemical 2014, 205, 227-233.
3. Teng, Y.; Jia, X.; Li, J.; Wang, E., Ratiometric fluorescence detection of tyrosinase activity and dopamine using thiolate-protected gold nanoclusters. Analytical chemistry 2015, 87 (9), 4897-4902.
4. Majorek, K. A.; Porebski, P. J.; Dayal, A.; Zimmerman, M. D.; Jablonska, K.; Stewart, A. J.; Chruszcz, M.; Minor, W., Structural and immunologic characterization of bovine, horse, and rabbit serum albumins. Molecular immunology 2012, 52 (3-4), 174-182.
5. Kumaran, R.; Ramamurthy, P., Denaturation mechanism of BSA by urea derivatives: evidence for hydrogen-bonding mode from fluorescence tools. Journal of fluorescence 2011, 21 (4), 1499-1508.
6. Sadler, P. J.; Tucker, A., pH‐induced structural transitions of bovine serum albumin: Histidine pKa values and unfolding of the N‐terminus during the N to F transition. European Journal of Biochemistry 1993, 212 (3), 811-817.
7. Amir Saheb, J. A. S., Mira Josowicz, Jiri Janata , Don R. Baer , Mark H. Engelhard, Controlling size of gold clusters in polyaniline from top–down and from bottom–up. Journal of Electroanalytical Chemistry 2008, 621, 238-244.
8. Qu, X.; Li, Y.; Li, L.; Wang, Y.; Liang, J.; Liang, J., Fluorescent gold nanoclusters: synthesis and recent biological application. Journal of Nanomaterials 2015, 2015, 4.
9. Yuan, X.; Luo, Z.; Zhang, Q.; Zhang, X.; Zheng, Y.; Lee, J. Y.; Xie, J., Synthesis of highly fluorescent metal (Ag, Au, Pt, and Cu) nanoclusters by electrostatically induced reversible phase transfer. Acs Nano 2011, 5 (11), 8800-8808.
10. Shibu, E.; Radha, B.; Verma, P. K.; Bhyrappa, P.; Kulkarni, G.; Pal, S.; Pradeep, T., Functionalized Au22 clusters: synthesis, characterization, and patterning. ACS applied materials & interfaces 2009, 1 (10), 2199-2210.
11. Russell, B.; Kubiak-Ossowska, K.; Mulheran, P.; Birch, D.; Chen, Y., Locating the nucleation sites for protein encapsulated gold nanoclusters: a molecular dynamics and fluorescence study. Physical Chemistry Chemical Physics 2015, 17 (34), 21935-21941.
12. Kawasaki, H.; Hamaguchi, K.; Osaka, I.; Arakawa, R., ph‐Dependent synthesis of pepsin‐mediated gold nanoclusters with blue green and red fluorescent emission. Advanced Functional Materials 2011, 21 (18), 3508-3515.
13. Wu, Z.; Jin, R., On the ligand’s role in the fluorescence of gold nanoclusters. Nano letters 2010, 10 (7), 2568-2573.
14. Raut, S.; Chib, R.; Butler, S.; Borejdo, J.; Gryczynski, Z.; Gryczynski, I., Evidence of energy transfer from tryptophan to BSA/HSA protected gold nanoclusters. Methods and applications in fluorescence 2014, 2 (3), 035004.
15. Le Guével, X.; Hötzer, B.; Jung, G.; Hollemeyer, K.; Trouillet, V.; Schneider, M., Formation of fluorescent metal (Au, Ag) nanoclusters capped in bovine serum albumin followed by fluorescence and spectroscopy. The Journal of Physical Chemistry C 2011, 115 (22), 10955-10963.
16. Yu, Y.; Luo, Z.; Teo, C. S.; Tan, Y. N.; Xie, J., Tailoring the protein conformation to synthesize different-sized gold nanoclusters. Chemical Communications 2013, 49 (84), 9740-9742.
17. Dixon, J. M.; Egusa, S., Conformational change-induced fluorescence of bovine serum albumin–gold complexes. Journal of the American Chemical Society 2018, 140 (6), 2265-2271.
18. Hsu, Y.-C.; Hung, M.-J.; Chen, Y.-A.; Wang, T.-F.; Ou, Y.-R.; Chen, S.-H., Identifying Reducing and Capping Sites of Protein-Encapsulated Gold Nanoclusters. Molecules 2019, 24 (8), 1630.
19. Xu, Y.; Sherwood, J.; Qin, Y.; Crowley, D.; Bonizzoni, M.; Bao, Y., The role of protein characteristics in the formation and fluorescence of Au nanoclusters. Nanoscale 2014, 6 (3), 1515-24.
20. Chaudhari, K.; Xavier, P. L.; Pradeep, T., Understanding the Evolution of Luminescent Gold Quantum Clusters in Protein Templates. ACS nano 2011, 5 (11), 8816-8827.
21. Xie, J.; Zheng, Y.; Ying, J. Y., Protein-directed synthesis of highly fluorescent gold nanoclusters. Journal of the American Chemical Society 2009, 131 (3), 888-9.
22. Mudedla, S. K.; Singam, E. R. A.; Vijay Sundar, J.; Pedersen, M. N.; Murugan, N. A.; Kongsted, J.; Ågren, H.; Subramanian, V., Enhancement of Internal Motions of Lysozyme through Interaction with Gold Nanoclusters and its Optical Imaging. The Journal of Physical Chemistry C 2014, 119 (1), 653-664.
23. Hsu, Y. C.; Hung, M. J.; Chen, Y. A.; Wang, T. F.; Ou, Y. R.; Chen, S. H., Identifying Reducing and Capping Sites of Protein-Encapsulated Gold Nanoclusters. Molecules 2019, 24 (8).
24. Christodoulou, J.; Sadler, P. J.; Tucker, A., A New Structural Transition of Serum Albumin Dependent on the State of Cys34. European Journal of Biochemistry 1994, 225 (1), 363-368.
25. Dixon, J. M.; Egusa, S., Conformational Change-Induced Fluorescence of Bovine Serum Albumin-Gold Complexes. Journal of the American Chemical Society 2018, 140 (6), 2265-2271.
26. Chevrier, D. M.; Chatt, A.; Zhang, P., Properties and applications of protein-stabilized fluorescent gold nanoclusters: short review. Journal of Nanophotonics 2012, 6 (1), 1-17, 17.
27. Das, T.; Ghosh, P.; Shanavas, M. S.; Maity, A.; Mondal, S.; Purkayastha, P., Protein-templated gold nanoclusters: size dependent inversion of fluorescence emission in the presence of molecular oxygen. Nanoscale 2012, 4 (19), 6018-24.
28. Xie, J.; Zheng, Y.; Ying, J. Y., Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+–Au+ interactions. Chemical Communications 2010, 46 (6), 961-963.
29. Zhang, Y.; Jiang, H.; Wang, X., Cytidine-stabilized gold nanocluster as a fluorescence turn-on and turn-off probe for dual functional detection of Ag+ and Hg2+. Analytica chimica acta 2015, 870, 1-7.
30. Liu, Y.; Ai, K.; Cheng, X.; Huo, L.; Lu, L., Gold‐nanocluster‐based fluorescent sensors for highly sensitive and selective detection of cyanide in water. Advanced Functional Materials 2010, 20 (6), 951-956.
31. Cui, M.-L.; Liu, J.-M.; Wang, X.-X.; Lin, L.-P.; Jiao, L.; Zheng, Z.-Y.; Zhang, L.-H.; Jiang, S.-L., A promising gold nanocluster fluorescent sensor for the highly sensitive and selective detection of S2−. Sensors and Actuators B: Chemical 2013, 188, 53-58.
32. Hu, L.; Han, S.; Parveen, S.; Yuan, Y.; Zhang, L.; Xu, G., Highly sensitive fluorescent detection of trypsin based on BSA-stabilized gold nanoclusters. Biosensors & bioelectronics 2012, 32 (1), 297-9.
33. Hemmateenejad, B.; Shakerizadeh-shirazi, F.; Samari, F., BSA-modified gold nanoclusters for sensing of folic acid. Sensors and Actuators B: Chemical 2014, 199, 42-46.
34. Ju, Y. J.; Li, N.; Liu, S. G.; Han, L.; Xiao, N.; Luo, H. Q.; Li, N. B., Ratiometric fluorescence method for malachite green detection based on dual-emission BSA-protected gold nanoclusters. Sensors and Actuators B: Chemical 2018, 275, 244-250.
35. Schweigert, N.; Zehnder, A. J. B.; Eggen, R. I. L., Chemical properties of catechols and their molecular modes of toxic action in cells, from microorganisms to mammals. Environmental Microbiology 2001, 3 (2), 81-91.
36. Pryor, W. A.; Stone, K.; Zang, L.-Y.; Bermúdez, E., Fractionation of aqueous cigarette tar extracts: fractions that contain the tar radical cause DNA damage. Chemical research in toxicology 1998, 11 (5), 441-448.
37. Stoyanovsky, D. A.; Goldman, R.; Claycamp, H. G.; Kagan, V. E., Phenoxyl radical-induced thiol-dependent generation of reactive oxygen species: implications for benzene toxicity. Archives of biochemistry and biophysics 1995, 317 (2), 315-323.
38. Maleki, N.; Kashanian, S.; Maleki, E.; Nazari, M., A novel enzyme based biosensor for catechol detection in water samples using artificial neural network. Biochemical engineering journal 2017, 128, 1-11.
39. Govindaraju, S.; Ankireddy, S. R.; Viswanath, B.; Kim, J.; Yun, K., Fluorescent Gold Nanoclusters for Selective Detection of Dopamine in Cerebrospinal fluid. Scientific reports 2017, 7, 40298.
40. Todorovic, R.; Devanesan, P.; Higginbotham, S.; Zhao, J.; Gross, M. L.; Rogan, E. G.; Cavalieri, E. L., Analysis of potential biomarkers of estrogen-initiated cancer in the urine of Syrian golden hamsters treated with 4-hydroxyestradiol. Carcinogenesis 2001, 22 (6), 905-911.
41. Chang, M., Dual roles of estrogen metabolism in mammary carcinogenesis. BMB reports 2011, 44 (7), 423-34.
42. Cavalieri, E.; Chakravarti, D.; Guttenplan, J.; Hart, E.; Ingle, J.; Jankowiak, R.; Muti, P.; Rogan, E.; Russo, J.; Santen, R.; Sutter, T., Catechol estrogen quinones as initiators of breast and other human cancers: implications for biomarkers of susceptibility and cancer prevention. Biochimica et biophysica acta 2006, 1766 (1), 63-78.
43. Vikraman, A. E.; Rasheed, Z.; Rajith, L.; Lonappan, L. A.; Krishnapillai, G. K., MWCNT-modified gold electrode sensor for the determination of propyl gallate in vegetable oils. Food analytical methods 2013, 6 (3), 775-780.
44. Vikraman, A. E.; Rasheed, Z.; Rajith, L.; Lonappan, L. A.; Krishnapillai, G. K., MWCNT-Modified Gold Electrode Sensor for the Determination of Propyl Gallate in Vegetable Oils. Food Analytical Methods 2012, 6 (3), 775-780.
45. Yang, J.; Stuart, M. A. C.; Kamperman, M., Jack of all trades: versatile catechol crosslinking mechanisms. Chemical Society Reviews 2014, 43 (24), 8271-8298.
46. Bors, W.; Michel, C.; Saran, M.; Lengfelder, E., The involvement of oxygen radicals during the autoxidation of adrenalin. Biochimica et biophysica acta 1978, 540 (1), 162-172.
47. Bibhuti Bhusan Mishra, B. x., Polyphonel Oxidases: Biochemical and Molecular Characterization, Distribution, Role and its Control. Enzyme Engineering 2016, 05 (01).
48. Friedrich, L. C.; Zanta, C. L. d. P. e. S.; Machulek Jr., A.; Silva, V. d. O.; Quina, F. H., Interference of inorganic ions on phenol degradation by the Fenton reaction. Scientia Agricola 2012, 69, 347-351.
49. Danilewicz, J. C., Interaction of Sulfur Dioxide, Polyphenols, and Oxygen in a Wine-Model System: Central Role of Iron and Copper. American Journal of Enology and Viticulture 2007, 58 (1), 53.
50. Marrubini, G.; Calleri, E.; Coccini, T.; Castoldi, A. F.; Manzo, L., Direct Analysis of Phenol, Catechol and Hydroquinone in Human Urine by Coupled-Column HPLC with Fluorimetric Detection. Chromatographia 2005, 62 (1-2), 25-31.
51. Chen, M.; Xia, Q.; Liu, M.; Yang, Y., Cloud-point extraction and reversed-phase high-performance liquid chromatography for the determination of synthetic phenolic antioxidants in edible oils. Journal of food science 2011, 76 (1), C98-103.
52. Piwowarska, J.; Radowicki, S.; Pachecka, J., Simultaneous determination of eight estrogens and their metabolites in serum using liquid chromatography with electrochemical detection. Talanta 2010, 81 (1-2), 275-280.
53. Lourenco, E.; Ferreira, A.; Pinto, E.; Yonamine, M.; Farsky, S., On-fiber derivatization of SPME extracts of phenol, hydroquinone and catechol with GC-MS detection. Chromatographia 2006, 63 (3-4), 175.
54. Canbay, E.; Akyilmaz, E., Design of a multiwalled carbon nanotube-Nafion-cysteamine modified tyrosinase biosensor and its adaptation of dopamine determination. Analytical biochemistry 2014, 444, 8-15.
55. Cui, M.; Huang, J.; Wang, Y.; Wu, Y.; Luo, X., Molecularly imprinted electrochemical sensor for propyl gallate based on PtAu bimetallic nanoparticles modified graphene-carbon nanotube composites. Biosensors & bioelectronics 2015, 68, 563-569.
56. Pereira da Silva Neves, M. M.; Gonzalez-Garcia, M. B.; Perez-Junquera, A.; Hernandez-Santos, D.; Fanjul-Bolado, P., Quenching of graphene quantum dots fluorescence by alkaline phosphatase activity in the presence of hydroquinone diphosphate. Luminescence : the journal of biological and chemical luminescence 2018, 33 (3), 552-558.
57. Teng, Y.; Jia, X.; Li, J.; Wang, E., Ratiometric fluorescence detection of tyrosinase activity and dopamine using thiolate-protected gold nanoclusters. Analytical chemistry 2015, 87 (9), 4897-902.
58. Jhonsi, M. A.; Kathiravan, A., Oxidative fluorescence quenching of Mg-phthalocyanine by quinones. Journal of Molecular Liquids 2014, 194, 188-192.
59. Jhan, S.-Y.; Huang, L.-J.; Wang, T.-F.; Chou, H.-H.; Chen, S.-H., Dimethyl labeling coupled with mass spectrometry for topographical characterization of primary amines on monoclonal antibodies. Analytical chemistry 2017, 89 (7), 4255-4263.
60. Russell, B. A.; Kubiak-Ossowska, K.; Mulheran, P. A.; Birch, D. J.; Chen, Y., Locating the nucleation sites for protein encapsulated gold nanoclusters: a molecular dynamics and fluorescence study. Physical chemistry chemical physics : PCCP 2015, 17 (34), 21935-41.
61. Yu, Y.; Luo, Z.; Teo, C. S.; Tan, Y. N.; Xie, J., Tailoring the protein conformation to synthesize different-sized gold nanoclusters. Chemical communications 2013, 49 (84), 9740-2.
62. Schaaff, T. G.; Whetten, R. L., Giant Gold−Glutathione Cluster Compounds:  Intense Optical Activity in Metal-Based Transitions. The Journal of Physical Chemistry B 2000, 104 (12), 2630-2641.
63. Le Guevel, X.; Daum, N.; Schneider, M., Synthesis and characterization of human transferrin-stabilized gold nanoclusters. Nanotechnology 2011, 22 (27), 275103.
64. Le Guével, X.; Hötzer, B.; Jung, G.; Hollemeyer, K.; Trouillet, V.; Schneider, M., Formation of Fluorescent Metal (Au, Ag) Nanoclusters Capped in Bovine Serum Albumin Followed by Fluorescence and Spectroscopy. The Journal of Physical Chemistry C 2011, 115 (22), 10955-10963.
65. Ku, M. C.; Fang, C. M.; Cheng, J. T.; Liang, H. C.; Wang, T. F.; Wu, C. H.; Chen, C. C.; Tai, J. H.; Chen, S. H., Site-specific covalent modifications of human insulin by catechol estrogens: Reactivity and induced structural and functional changes. Scientific reports 2016, 6, 28804.
66. Li, Y.; Jongberg, S.; Andersen, M. L.; Davies, M. J.; Lund, M. N., Quinone-induced protein modifications: Kinetic preference for reaction of 1,2-benzoquinones with thiol groups in proteins. Free radical biology & medicine 2016, 97, 148-157.
67. Sever, M. J.; Wilker, J. J., Visible absorption spectra of metal–catecholate and metal–tironate complexes. Dalton transactions 2004, (7), 1061-1072.
68. Scott, D. T.; McKnight, D. M.; Blunt-Harris, E. L.; Kolesar, S. E.; Lovley, D. R., Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environmental science & technology 1998, 32 (19), 2984-2989.
69. Dwiecki, K.; Neunert, G.; Nogala-Kałucka, M.; Polewski, K., Fluorescence quenching studies on the interaction of catechin-quinone with CdTe quantum dots. Mechanism elucidation and feasibility studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2015, 149, 523-530.
70. Ku, M.-C.; Fang, C.-M.; Cheng, J.-T.; Liang, H.-C.; Wang, T.-F.; Wu, C.-H.; Chen, C.-C.; Tai, J.-H.; Chen, S.-H., Site-specific covalent modifications of human insulin by catechol estrogens: reactivity and induced structural and functional changes. Scientific reports 2016, 6, 28804.
71. Fraiji, L. K.; Hayes, D. M.; Werner, T., Static and dynamic fluorescence quenching experiments for the physical chemistry laboratory. Journal of chemical education 1992, 69 (5), 424.
72. Wen, M.-G.; Zhang, X.-B.; Tian, J.-N.; Ni, S.-H.; Bian, H.-D.; Huang, Y.-L.; Liang, H., Binding interaction of xanthoxylin with bovine serum albumin. Journal of solution chemistry 2009, 38 (4), 391.
73. Van De Weert, M., Fluorescence quenching to study protein-ligand binding: common errors. Journal of fluorescence 2010, 20 (2), 625-629.
74. Siddiqui, G. A.; Siddiqi, M. K.; Khan, R. H.; Naeem, A., Probing the binding of phenolic aldehyde vanillin with bovine serum albumin: Evidence from spectroscopic and docking approach. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2018, 203, 40-47.
75. Wang, L.; Chen, H.; Wang, H.; Wang, F.; Kambam, S.; Wang, Y.; Zhao, W.; Chen, X., A fluorescent probe with high selectivity to glutathione over cysteine and homocysteine based on positive effect of carboxyl on nucleophilic substitution in CTAB. Sensors and Actuators B: Chemical 2014, 192, 708-713.
76. Mannu, A.; Di Pietro, M. E.; Mele, A., Band-Gap Energies of Choline Chloride and Triphenylmethylphosphoniumbromide-Based Systems. Molecules 2020, 25 (7), 1495.
77. Viezbicke, B. D.; Patel, S.; Davis, B. E.; Birnie III, D. P., Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. physica status solidi (b) 2015, 252 (8), 1700-1710.
78. Pan, S.; Li, G., Recent progress in p-type doping and optical properties of SnO2 nanostructures for optoelectronic device applications. Recent Patents on Nanotechnology 2011, 5 (2), 138-161.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw