進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2008202011344700
論文名稱(中文) 結構配置及孔隙率對蜂巢結構材料的力學影響
論文名稱(英文) Influence of architecture and porosity on mechanical behavior of honeycomb structures
校院名稱 成功大學
系所名稱(中) 工程科學系
系所名稱(英) Department of Engineering Science
學年度 108
學期 2
出版年 109
研究生(中文) 李哲豪
研究生(英文) Che-Hao Lee
學號 N96071279
學位類別 碩士
語文別 英文
論文頁數 114頁
口試委員 口試委員-洪宏基
口試委員-陳正宗
口試委員-潘文峰
指導教授-劉立偉
口試委員-游濟華
中文關鍵字 蜂巢結構  結構配置  孔隙率  單軸實驗  循環載重  有限元素分析  力-位移曲線  遲滯迴圈  應力場 
英文關鍵字 Honeycombs  architecture  porosity  monotonic experiment  cyclic loading  finite element analysis  load-displacement curve  hysteresis loop  stress field 
學科別分類
中文摘要 本研究以實驗與計算的方式來探討在單調與循環載重下結構配置與孔隙率對於蜂巢結構材料的塑性行為之影響。藉由改變方向性與孔隙率,或者是固定孔隙率而改變蜂巢結構的配置,設計出4類17種不同的蜂巢結構材料。其中的1類3種蜂巢結構,以三維列印方式製出試體,施以單調拉伸路徑,觀察實驗位移-力曲線,並制定降伏力/位移決定準則。在獲得降伏力/位移與彈性勁度後,運用具備von Mises降伏面與Prager線性走動硬化的彈塑性材料模式,以此基礎來建立有限元素分析模型,使用ANSYS來模擬單軸拉伸試驗,並且觀察了4種類別的蜂巢結構的整體力與位移的行為還有局部的應力場變化。此外,也模擬了循環加載,發現在位移控制±2mm以及力量控制±800N的循環加載下,遲滯迴圈的面積、迴圈端點間的斜率以及最高載重的值會隨著結構配置以及孔隙率的改變而產生變化。
英文摘要 In this study, the influence of architecture and porosity on the plastic behaviorof honeycombs structural materials under monotonic and cyclic loading was explored experimentally and computationally. By changing the orientation and porosity, or changing the configuration of the honeycombs by fixing the porosity, 4 categories with 17 types honeycombs were designed. Among these specimens, one category with three types honeycombs were manufactured by 3D printing and the applied monotonic displacement path to experimentally observe the displacement-force curves. We further defined the determination of the yield load/displacement to obtain the yielding load/displacement and the elastic stiffness. Then the elastic-plastic material model with von Mises yield surface and Prager's kinematic hardening rule were used in the finite element analysis. We conducted ANSYS to simulate uniaxial tensile tests of the 4 categories of honeycombs and then observed the global behavior of load and displacementand the local detail of the stress field. Furthermore, the cyclic loading tests with the displacement-controlled (±2mm) and the force-controlled (±800N) were simulated and the influence of the orientation, the porosity, and the architecture on the area of hysteresis loop, slope of the endpoints and peak load were explored from simulation.
論文目次 摘要 I
Abstract II
致謝 III
List of Figures VII
List of Tables XVI
Chapter 1 Introduction 1
1.1 Background 1
1.1.1 Mechanical behavior of honeycombs under monotonic loading 2
1.1.2 Mechanical behavior of honeycombs under biaxial loading 3
1.1.3 Hierarchical structures and energy absorption 3
1.1.4 Plastic behavior of materials under cyclic test 4
1.2 Objective 5
1.3 Outlines 6
Chapter 2 Experimental study on influence of porosity 7
2.1 Specimen design 8
2.2 The manufacture of honeycomb specimen 8
2.2.1 Layer height 9
2.2.2 Initial layer height 10
2.2.3 Line width 10
2.2.4 Infill density 10
2.3 Tensile tests of honeycombs 11
2.3.1 Experiment methods 11
2.3.2 Experimental results 11
2.4 Determination of yield loads 12
2.5 Influence of porosity on yield loads & elastic stiffness 13
Chapter 3 Computational study of influence of porosity and architecture 26
3.1 Specimen design 26
3.2 Finite element modelling 27
3.2.1 Constitutive modelling 28
3.2.2 Convergence analysis 29
3.2.3 Validation of finite element models 30
3.3 Computational simulation and results 33
3.3.1 Displacement-controlled 33
3.3.2 Force-controlled 33
3.4 Comparison & discussions 34
3.4.1 Area of hysteresis loop (displacement-controlled) 34
3.4.2 Peak load (displacement-controlled) 34
3.4.3 Slope of the endpoints (displacement-controlled) 35
3.4.4 Area of hysteresis loop (force-controlled) 35
3.4.5 Peak displacement (force-controlled) 36
3.4.6 Slope of the endpoints (force-controlled) 36
Chapter 4 Conclusion 109
Reference 111
Appendix 114
參考文獻 1. L. J. Gibson and M. F. Ashby,Cellular Solids: Structures & Properties. CambridgeU.K., 1997.
2. G. Cricrì, M. Perrella, and C. Calì, “Honeycomb failure processes under in-plane loading,” Composites Part B: Engineering, vol. 45, no. 1, pp. 1079 – 1090, 2013.
3. C. C. Foo, G. B. Chai, and L. K. Seah, “Mechanical properties of nomex materialand nomex honeycomb structure,” Composite Structures, vol. 80, no. 4, pp. 588 –594, 2007.
4. S. Balawi and J. Abot, “The effect of honeycomb relative density on its effective in-plane elastic moduli: An experimental study,” Composite Structures, vol. 84, no. 4, pp. 293 – 299, 2008.
5. G. G. Galletti, C. Vinquist, and O. S. Es-Said “Theoretical design and analysis of a honeycomb panel sandwich structure loaded in pure bending,” Engineering Failure Analysis, vol. 15, no. 5, pp. 555 – 562, 2008.
6. S. D. Papka and S. Kyriakides, “In-plane compressive response and crushing of honeycomb,” Journal of the Mechanics and Physics of Solids, vol. 42, no. 10,pp. 1499 – 1532, 1994.
7. S. Papka and S. Kyriakides, “Biaxial crushing of honeycombs: —part 1: Experiments,” International Journal of Solids and Structures, vol. 36, no. 29, pp. 4367 –4396, 1999.
8. L. Hu, T. Yu, Z. Gao, and X. Huang, “The inhomogeneous deformation of polycarbonate circular honeycombs under in-plane compression,” International Journal of Mechanical Sciences, vol. 50, no. 7, pp. 1224 – 1236, 2008.
9. A. Ajdari, B. H. Jahromi, J. Papadopoulos, H. Nayeb-Hashemi, and A. Vaziri, “Hierarchical honeycombs with tailorable properties,” International Journal of Solids and Structures, vol. 49, no. 11, pp. 1413 – 1419, 2012.
10. A. Ajdari, B. H. Jahromi, J. Papadopoulos, H. Nayeb-Hashemi, and A. Vaziri, “Hierarchical honeycombs with tailorable properties, ”International Journal of Solids and Structures, vol. 49, no. 11, pp. 1413 – 1419, 2012.
11. L. Hu, F. You, and T. Yu, “Effect of cell-wall angle on the in-plane crushing behaviour of hexagonal honeycombs,” Materials & Design, vol. 46, pp. 511 – 523,2013.
12. S. Kulkarni, Y. Desai, T. Kant, G. Reddy, Y. Parulekar, and K. Vaze, “Uniaxial and biaxial ratchetting study of SA333 Gr.6 steel at room temperature,” International Journal of Pressure Vessels and Piping, vol. 80, no. 3, pp. 179 – 185,2003.
13. S. Kulkarni, Y. Desai, T. Kant, G. Reddy, P. Prasad, K. Vaze, and C. Gupta, “Uniaxial and biaxial ratchetting in piping materials—experiments and analysis,” International Journal of Pressure Vessels and Piping, vol. 81, no. 7, pp. 609 – 617,2004.
14. G. Kang, Y. Li, J. Zhang, Y. Sun, and Q. Gao, “Uniaxial ratcheting and failure behaviors of two steels,” Theoretical and Applied Fracture Mechanics, vol. 43, no. 2,pp. 199 – 209, 2005.
15. G. Belingardi, P. Martella, and L. Peroni, “Fatigue analysis of honeycomb-composite sandwich beams,” Composites Part A: Applied Science and Manufacturing, vol. 38, no. 4, pp. 1183 – 1191, 2007.Selected Papers from the Joint 8th
International Conference on Deformation and Fracture of Composites (DFC-8)
and Experimental Techniques and Design in Composite Materials (ETDCM-7)
held at the University of Sheffield, UK.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-08-24起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-08-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw