進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2008202001102600
論文名稱(中文) 呼吸式質子交換膜燃料電池金屬雙極板與電堆設計
論文名稱(英文) Design of Metallic Bipolar Plate and Stack for Air-breathing PEMFC
校院名稱 成功大學
系所名稱(中) 航空太空工程學系
系所名稱(英) Department of Aeronautics & Astronautics
學年度 108
學期 2
出版年 109
研究生(中文) 王竣民
研究生(英文) Chun-Min Wang
學號 P46074171
學位類別 碩士
語文別 中文
論文頁數 109頁
口試委員 指導教授-王振源
指導教授-賴維祥
口試委員-陳震宇
中文關鍵字 質子交換膜燃料電池  呼吸式燃料電池  不銹鋼雙極板  DYNAFORM  沖壓製程參數最佳化 
英文關鍵字 Proton exchange membrane fuel cell  Air-breathing fuel cell  Stainless steel bipolar plate  DYNAFORM  Optimal stamping parameters 
學科別分類
中文摘要 本研究旨在透過有限元素法模擬金屬鈑件成型與鈑件尺寸驗證來開發一呼吸式質子交換膜燃料電池之金屬雙極板。經由DYNAFORM模擬軟體與LS-DYNA求解分析沖壓參數與流道尺寸對金屬雙極板沖壓成型性之影響,並利用模擬之成型極限圖、變薄率與回彈量等鈑件特性找出設計與製程最佳參數。另外亦組裝五級呼吸式金屬板質子交換膜燃料電池堆,透過極化曲線與電化學頻譜分析進行電池性能實測,驗證此雙極板之可行性。
本研究成功利用沖壓製程開發一SS316L雙極板之呼吸式燃料電池堆,此電池之反應面積為155 mm2。在電池操作溫度45℃、鎖附扭矩30 kgf-cm、氫氣計量比為1.5、陽極提供100%相對濕度及陰極提供空氣強制對流操作條件下,最大體積功率密度可達約131.73 mW/cm2,若在氫氣供給端施予一背壓(Back Pressure),能大幅增進功率密度約92%達到253.03 mW/cm2。另外模擬結果顯示,吾人所設計之不銹鋼316L雙極板最佳成型之參數為:流道深度0.65 mm、模具圓角半徑0.25 mm、沖壓速度250 mm/s、鈑件厚度0.2 mm及壓料板壓力1500 kN。本研究發現流道深度增加,變薄率與回彈量皆會提升;適度增加模具圓角半徑,可使變薄率與回彈量下降;沖壓製程中加裝壓料板可有效降低回彈量。
英文摘要 This study aims to develop a metallic bipolar plate for proton exchange membrane fuel cell. The DYNAFORM and LS-DYNA softwares are used to simulate the stamping process for metallic bipolar plates. The optimal flow channel geometry and stamping coefficients are obtained by analyzing forming limit diagram, thinning ratio and springback of the metallic bipolar plates. A 5-cell air-breathing PEMFC with the metallic bipolar plates is as well assembled and tested. Via the polarization curve and electrochemical impedance spectroscopy, the performance and practicability of the metallic bipolar plates are verified.
A 5-cell air-breathing PEMFC with stamped SS316L bipolar plates of 334×72.65 mm2 is successfully developed in this work. The maximum power density, 131.73 mW/cm2, is obtained with forced air convection at an operating temperature of 45℃, a torque of 30 kgf-cm, and a relative humidity of 100%. If the back pressure is applied to the anode side of the PEMFC, the power density is dramatically promoted to 253.03 mW/cm2, which is about 92% higher than that without back pressure. As for the fabrication process of metallic bipolar plates, the simulation results show that the optimal stamping parameters of SS316L plates are the binder force of 1500 kN, the stamping speed of 250 mm/s, the punch and die radiuses of 0.2 mm, the blank thickness of 0.2mm, and the flow channel depth of 0.65 mm. Furthermore, the binder force can reduce the springback effectively, but the blank cracks as the force excesses 1500 kN. Both the thinning rate and springback increase with increasing the channel depth. With enlarging the punch and die radiuses properly, the blank becomes safer and has smaller springback. Additionally, experiments are conducted to validate the dimension accuracy of numerical methods.
論文目次 目 錄
中文摘要 I
Design of Metallic Bipolar Plate and Stack for Air-breathing PEMFC II
誌謝VI
目 錄VII
表目錄X
圖目錄XI
符號說明XV
第 1 章 緒論1
1-1前言1
1-2質子交換膜燃料電池簡介4
1-3質子交換膜燃料電池工作原理8
1-4研究動機9
1-5研究目的10
第 2 章 文獻回顧12
2-1金屬雙極板材料12
2-2金屬雙極板成型17
2-3雙極板鍍層20
2-4雙極板模擬分析23
2-5燃料電池堆設計與組裝26
2-6呼吸式燃料電池29
第 3 章 實驗設備34
3-1燃料電池測試機台34
3-2電池加熱系統35
3-3燃料供應系統36
3-4五級呼吸式金屬雙極板電池堆37
3-4-1 膜電極組39
3-4-2 不銹鋼雙極板40
3-4-3 集電板40
3-4-4 端板41
第 4 章 研究方法43
4-1 DYNAFORM簡介43
4-2 DYNAFORM統御方程式47
4-3成型極限圖53
4-4極化曲線56
4-4-1 活化極化57
4-4-2 歐姆極化59
4-4-3 濃度極化60
4-5電化學阻抗頻譜分析62
第 5 章 結果與討論66
5-1 DYNAFORM模擬設定66
5-1-1網格收斂性67
5-1-2壓料板壓力對沖壓成型性之影響69
5-1-3沖壓速度對沖壓成型性之影響75
5-1-4模具圓角半徑對沖壓成型性之影響76
5-1-5鈑件厚度對沖壓成型性之影響78
5-1-6流道深度對沖壓成型性之影響81
5-2金屬雙極板之五級電堆性能測試88
5-2-1鎖附扭矩對五級電堆性能之影響89
5-2-2露點溫度對五級電堆性能之影響90
5-2-3風扇電壓對五級電堆性能之影響92
5-2-4電池操作溫度對五級電堆性能之影響94
5-2-5背壓壓力對五級電堆性能之影響97
第 6 章 結論99
參考文獻101
參考文獻 [1]https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html
[2]https://www.toyota.com/mirai/fcv.html
[3]https://www.toyota-europe.com/startyourimpossible/mirai-concept
[4]https://www.hyundaiusa.com/us/en/vehicles/nexo
[5]https://www.honda.co.jp/CLARITYFUELCELL/webcatalog/performance/ecology/
[6]https://www.ballard.com/docs/default-source/spec-sheets/fcgen-1020-acs-v2.pdf?sfvrsn=c3ebc380_2
[7]https://www.intelligent-energy.com/our-products/product-information/
[8]https://www.horizonfuelcell.com/h-series-stacks
[9]陳震宇, “溫度與溼度對PBI/H3PO4燃料電池特性影響之研究,” 國立成功大學航空太空工程學系博士論文, 2010年。
[10]R. Hornung, G. Kappelt, “Bipolar plate materials development using Fe-based alloys for solid polymer fuel cells,” Journal of Power Sources, Vol.72, pp.20-21, 1998.
[11]J. Wind, R. Späh, W. Kaiser, and G. Böhm, "Metallic bipolar plates for PEM fuel cells," Journal of Power Sources, Vol.105, No.2, pp.256-260, 2002.
[12]Allen Hermann, Tapas Chaudhuri, Priscila Spagnol, “Bipolar plates for PEM fuel cell: A review,” International Journal of Hydrogen Energy, Vol.30, pp.1297-1302, 2005.
[13]T. Matsuura, M. Kato, M. Hori, “Study on metallic bipolar plate for proton exchange membrane fuel cell,” Journal of Power Sources, Vol. 161, pp.74-78, 2006.
[14]De Las Heras, N., Roberts, E. P. L., Langton, R., & Hodgson, D. R., “A review of metal separator plate materials suitable for automotive PEM fuel cells,” Energy & Environmental Science, Vol.2, pp.206-214, 2009.
[15]E. A. Cho, U. S. Jeon, S. A. Hong, I. H. Oh, S. G. Kang, “Performance of a 1KW-class PEMFC stack using TiN-coated 316 stainless steel bipolar plates,” Journal of Power Sources, Vol.142, pp.177-183, 2005.
[16]R. K. Ahluwalia, X. Wang, K. Tajiri, R. Kumar, “Fuel cell systems analysis,” DOE Hydrogen Program Report, 2009.
[17]Y. Yang, “PEM fuel cell system manufacturing cost analysis for automotive applications,” Austin Power Engineering LLC, 2015.
[18]H. Wang, M. A. Sweikart, J. A. Turner, “Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells,” Journal of Power Sources, Vol. 115, pp. 243-251, 2003.
[19]H. Wang, J. A. Turner, “Ferritic stainless steels as bipolar plate material for polymer electrolyte membrane fuel cells,” Journal of Power Sources, Vol.128, pp.193-200, 2004.
[20]Yue Hung, K. M. El-Khatib, and Hazem Tawfik, “Testing and evaluation of aluminum coated bipolar plates of PEM fuel cells operating at 70 C,” Journal of Power Sources, Vol.163, pp.509-513, 2006.
[21]V. V. Nikam, R. G. Reddy, S. R. Collins, P. C. Williams, G. H. Schiroky, G.W. Henrich, “Corrosion resistant low temperature carburized SS 316 as bipolar plate material for PEMFC application,” Electrochimica Acta, Vol.53, pp.2743-2750, 2008.
[22]M. Kumagai, S.T. Myung, T. Ichikawa, H. Yashiro, “Applicability of extra low interstitials ferritic stainless steels for bipolar plates of proton exchange membrane fuel cells,” Journal of Power Sources, Vol. 195, pp.7181-7186, 2010.
[23]M. P. Brady, M. A. Elhamid, G. Dadheech, J. Bradley, T. J. Toops, H. M. Meyer III, P. F. Tortorelli, “Manufacturing and performance assessment of stamped, laser welded, and nitrided FeCrV stainless steel bipolar plates for proton exchange membrane fuel cells,” International Journal of Hydrogen Energy, Vol. 38, pp.4734-4739, 2013.
[24]S. Shimpalee, V. Lilavivat, H. McCrabb, Y. Khunatorn, H.-K. Lee, W.-K. Lee, J.W. Weidner, “Investigation of bipolar plate materials for proton exchange membrane fuel cells,” International Journal of Hydrogen Energy, Vol. 41, pp.13688-13696, 2016.
[25]劉孟翰,“不銹鋼雙極板燃料電池堆設計及其性能研究,”國立成功大學航空太空工程研究所碩士論文, 2016年.
[26]G. Hinds, and E. Brightman, “Towards more representative test methods for corrosion resistance of PEMFC metallic bipolar plates,” International journal of hydrogen energy, Vol.40, pp.2785-2791, 2015.
[27]X. Z. Yuan, H. Wang, J. Zhang, D. P. Wilkinson, “Bipolar Plates for PEM Fuel Cells - From Materials to Processing,” Journal of New Materials for Electrochemical Systems, Vol.8, pp.257-267, 2005.
[28]L. Peng, X. Lai, D. Liu, P. Hu, J. Ni, “Flow channel shape optimum design for hydroformed metal bipolar plate in PEM fuel cell,” Journal of Power Sources, Vol.178, pp.223-230, 2008.
[29]C. H. Lin, “Surface roughness effect on the metallic bipolar plates of a proton exchange membrane fuel cell,” Applied Energy, Vol. 104, pp.898-904, 2013.
[30]L. Peng, P. Hu, X. Lai, D. Mei, J. Ni, “Investigation of micro/meso sheet soft punch stamping process – simulation and experiments,” Materials and Design, Vol.30, pp.783-790, 2009.
[31]Y. Liu, L. Hua, “Fabrication of metallic bipolar plate for proton exchange membrane fuel cells by rubber pad forming,” Journal of Power Sources, Vol.195, pp.3529-3535, 2010.
[32]M. G. Jung, Y. P. Jeon, C. G. Kang, “Metallic bipolar plate fabrication process of fuel cell by rubber pad forming and its performance evaluation,” Key Engineering Materials, Vols.535-536, pp.310-313, 2013.
[33]S. Mahabunphachai, Ö. N. Cora, M. Koç, “Effect of manufacturing processes on formability and surface topography of proton exchange membrane fuel cell metallic bipolar plates,” Journal of Power Sources, Vol.195, pp.5269 -5277, 2010.
[34]P. Yi, L. Peng, L. Feng, P. Gan, X. Lai, “Performance of a proton exchange membrane fuel cell stack using conductive amorphous carbon-coated 304 stainless steel bipolar plates,” Journal of Power Sources, Vol. 195, pp.7061-7066, 2010.
[35]L. Peng, P. Yi, X. Lai, “Design and manufacturing of stainless steel bipolar plates for proton exchange membrane fuel cells,” International Journal of Hydrogen Energy, Vol. 39, pp. 21127-21153, 2014.
[36]F. Dundar, E. Dur, M. Mahabunphachai, M. Koç, “Corrosion resistance characteristics of stamped and hydroformed proton exchange membrane fuel cell metallic bipolar plates,” International Journal of Power Sources, Vol. 195, pp. 3546-3552, 2010
[37]C. Turan, Ö. N. Cora, M. Koç, “Effect of manufacturing processes on contact resistance characteristics of metallic bipolar plates in PEM fuel cells,” International Journal of Hydrogen Energy, Vol.36, pp.12370-12380, 2011.
[38]M. G. Jeong, C. K. Jin, G. W. Hwang, C. G. Kang, “formability evaluation of stainless steel bipolar plate considering draft angle of die and process parameters by rubber forming,” International Journal of Precision Engineering and Manufacturing, Vol.15, pp.913-919,2014.
[39]C. K. Jin, J.Y. Koo , C. G. Kang, “Fabrication of stainless steel bipolar plates for fuel cells using dynamic loads for the stamping process and performance evaluation of a single cell,” International journal of hydrogen energy, Vol.39, pp.21461-21469, 2014.
[40]T. L. Smith, A. D. Santamaria, J. W. Park, K. Yamazaki, “Alloy selection and die design for stamped proton exchange membrane fuel cell (PEMFC) bipolar plates,” Procedia CIRP, Vol. 14, pp.275-280, 2014.
[41]F. A. Khatir, M. Elyasi, H. T. Ghadikolaee, M. Hosseinzadeh, “Evaluation of effective parameters on stamping of metallic bipolar plates,” Procedia Engineering, Vol.183, pp.322-329, 2017.
[42]M. Li, S. Luo, C. Zeng, J. Shen, H. Lin, C. Cao, “Corrosion behavior of TiN coated type 316 stainless steel in simulated PEMFC environments,” Corrosion Science, Vol.46, pp.1369-1380, 2004.
[43]K. Feng, X. Cai, H. Sun, Z. Li, P.K. Chu, “Carbon coated stainless steel bipolar plates in polymer electrolyte membrane fuel cells,” Diamond & Related Materials, Vol.19, pp.1354-1361, 2010.
[44]W. Y. Ho, C. H. Yang, W. C. Huang, W.Y. Ho, “Corrosion resistance and electrical conductivity of TiN/CrN multilayer coated stainless steel,” Advanced Materials Research, Vol.214, pp.214-295, 2011.
[45]D. Zhang, L. Duan, L. Guo, Z. Wanga, J. Zhao, W.H. Tuan, K. Niihara, “TiN-coated titanium as the bipolar plate for PEMFC by multi-arc ion plating,” International Journal of Hydrogen Energy, Vol.36, pp.9155-9161, 2011
[46]E. Dur, Ö.N. Cora, M. Koç, “Effect of manufacturing process sequence on the corrosion resistance characteristics of coated metallic bipolar plates,” Journal of Power Sources, Vol.246, pp.788-799, 2014.
[47]C. K. Jin, K. H. Lee, C. G. Kang, “Performance and characteristics of titanium nitride, chromium nitride, multi-coated stainless steel 304 bipolar plates fabricated through a rubber forming process,” International Journal of Hydrogen Energy, Vol.40, pp.6681-6688, 2015.
[48]K. Lin, X. Li, H. Dong, S. Du, Y. Lu, X. Ji, D. Gu, “Surface modification of 316 stainless steel with platinum for the application of bipolar plates in high performance proton exchange membrane fuel cells,” International Journal of Hydrogen Energy, Vol. 42, pp.2338-2348, 2017.
[49]S. Wang, M. Hou, Q. Zhao, Y. Jiang, Z. Wang, H. Li, Y. Fu, Z. Shao, “Ti/(Ti,Cr)N/CrN multilayer coated 316L stainless steel by arc ion plating as bipolar plates for proton exchange membrane fuel cells,” Journal of Energy Chemistry, Vol.26, pp.168-174, 2017.
[50]L. M. Yu, X. Chen, Y. Yang, “The Stamping process simulation of plate using CAE technology,” Advanced Materials Research, Vols.538-541, pp.901-904, 2012.
[51]Q. Hu, D. Zhang, H. Fu, K.K. Huang, “Investigation of stamping process of metallic bipolar plates in PEM fuel cell-numerical simulation and experiments,” International Journal of Hydrogen Energy, Vol.39, pp.13770 -13776, 2014.
[52]Q. Hu, D. Zhang, H. Fu, “Effect of flow-field dimensions on the formability of Fe-Ni-Cr alloy as bioplar for PEM (proton exchange membrane) fuel cell,” Energy, Vol.83, pp.156-163, 2015.
[53]S. Xu, K. Li, Y. Wei, W. Jiang, “Numerical investigation of formed residual stresses and the thickness of stainless steel bipolar plate in PEMFC,” International journal of hydrogen energy, Vol.41, pp.6855-6863, 2016.
[54]S. Shimpalee, S. Greenway, J. W. V. Zee, “The impact of channel path length on PEMFC flow-field design,” Journal of Power Sources, Vol.160, pp.398-406, 2006.
[55]C. W. Lin, C. H. Chien, J. Tan, Y. J. Chao, J. W. V. Zee, “Chemical degradation of five elastomeric seal materials in a simulated and an accelerated PEM fuel cell environment,” Journal of Power Sources, Vol.196, pp.1955-1966, 2011.
[56]D. Qiu, P. Yi, L. Peng, X. Lai, “Study on shape error effect of metallic bipolar plate on the GDL contact pressure distribution in proton exchange membrane fuel cell,” International Journal of Hydrogen Energy, Vol.38, pp.6762-6772, 2013.
[57]D. H. Ye, Z. G. Zhan, “A review on the sealing structures of membrane electrode assembly of proton exchange membrane fuel cells,” Journal of Power Sources, Vol.231, pp.285-292, 2013.
[58]D. Qiu, P. Yi, L. Peng, X. Lai, “Assembly design of proton exchange membrane fuel cell stack with stamped metallic bipolar plates,” International Journal of Hydrogen Energy, Vol.40, pp.11559-11568 , 2015.
[59]E. Alizadeh, M. M. Barzegari, M. Momenifar, M. Ghadimi, S.H.M. Saadat, “Investigation of contact pressure distribution over the active area of PEM fuel cell stack,” International Journal of Hydrogen Energy, Vol.41, pp.3062-3071, 2016.
[60]M. Kim, J. W. Lim, D. G. Lee, “Electrical contact resistance between anode and cathode bipolar plates with respect to surface conditions,” Composite Structures, Vol.189, pp.79-86, 2018.
[61]N. Bussayajarn, H. Ming, K. K. Hoong, W. Y. M. Stephen, C. S. Hwa, “Planar air breathing PEMFC with self-humidifying MEA and open cathode geometry design for portable applications,” International Journal of Hydrogen Energy, Volume 34, pp.7761-7767, 2009.
[62]M. Kim, D. G. Lee, “Development of the anode bipolar plate/membrane assembly unit for air breathing PEMFC stack using silicone adhesive bonding,” Journal of Power Sources, Vol.315, pp. 86-95, 2016.
[63]S. P. Isanakaa, T. E. Sparksa, F. F. Lioua, J. W. Newkirk, “Design strategy for reducing manufacturing and assembly complexity of air-breathing proton exchange membrane fuel cells (PEMFC),” Journal of Manufacturing Systems, Vol.38, pp.165-171, 2016.
[64]T. J. R. Hughes, W. K. Liu, “Nonlinear finite element analysis of shells-part II. two-dimensional shells,” Computer Methods in Applied Mechanics and Engineering, Vol.27, pp.167-181, 1981.
[65]吳乃賢,“呼吸式金屬雙極板燃料電池之鈑件成型性與性能測試,”國立成功大學航空太空工程研究所碩士論文, 2019年。
[66]P. C. Galbraith, J. O. Hallquist, “Shell-element formulations in LS-DYNA3D : their use in the modelling of sheet-metal forming,” Journal of Materials Processing Technology, Vol.50, pp.158-167, 1995.
[67]M. Firat, “Computer aided analysis and design of sheet metal forming processes: Part I – The finite element modeling concepts,” Materials & Design, Vol.28, pp.1298-1303, 2007.
[68]John O. Hallquist, LS-DYNA® Theory Manual. 7374 Las Positas Road Livermore, California 94551: Livermore Software Technology Corporation; 2006.
[69]S. P. Keeler, W. A. Backofen, “Plastic instability and fracture in sheets stretched over rigid punches,” ASM Transactions Quarterly, Vol.56, pp.25-48, 1963.
[70]G. M. Goodwin, “Application of strain analysis to sheet metal forming problems in press shop,” SAE, 1968.
[71]A. S. Kornonen, “On the theories of sheet metal necking and forming limits,” Journal Engineering Materials and Technology, Vol.100, pp.303-309, 1978.
[72]Z. Marciniak, J. L. Duncan, S. J. Hu. Mechanics of Sheet Metal Forming, 2th Edition, 2002.
[73]EG&G Services Parsons, Inc. Fuel Cell Handbook, 6th Edition, 2002.
[74]W. H. Zhu, R. U. Payne, B. J. Tatarchuk, “PEM stack test and analysis in a power system at operational load via ac impedance,” Journal of Power Sources, Vol.168, pp.211-217, 2007.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-06-24起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-06-24起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw