進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2008201916094100
論文名稱(中文) 以超聲輔助超臨界流體氧化剝離法製備奈米金/三氧化鉬/二硫化鉬三元複合物應用於光催化
論文名稱(英文) Ultrasonic-assisted supercritical fluid oxidation and exfoliation synthesis of Au/MoO3/MoS2 ternary composite for photocatalyst
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 林佩瑤
研究生(英文) Pei-Yao Lin
學號 N56064038
學位類別 碩士
語文別 中文
論文頁數 82頁
口試委員 指導教授-丁志明
口試委員-葉樹開
口試委員-賴怡璇
口試委員-張高碩
口試委員-蘇彥勳
中文關鍵字 二硫化鉬  超臨界流體  氧化剝離  光催化 
英文關鍵字 MoS2  Supercritical fluid  Oxidation exfoliation  Photocatalyst 
學科別分類
中文摘要 本研究的目的為利用一新穎且環境友善之超臨界流體系統,同時結合部分氧化剝離法以及超聲處理,剝離並合成以二硫化鉬為主體的奈米複合材料應用於光催化裂解水產氫。超臨界二氧化碳流體有著高擴散率、低黏度、高質傳能力且低汙染又不殘留於製程之中,溶劑的特性也能輕易地藉由改變溫度和壓力來改變其溶劑表現,由於上述之特性,超臨界二氧化碳流體能滲入材料孔隙及層間,藉由瞬間的壓力下降或是系統中的相轉變,達到剝離的效果,剝離之二硫化鉬將體現更多的比表面積和直接能隙,藉此優化二硫化鉬奈米複合材料的性質,此外,結合氧化剝離及超聲處理,將有助於提升剝離的效果,並使商用二硫化鉬將轉以形成三氧化鉬/二硫化鉬複合物,其邊界和活性點大幅增加,有助於增加材料催化反應活性。我們進一步的添加奈米金粒子於複合物中,用以加速電子電洞對的分離及提升導電性,進而提升其產氫效率。
本論文將探究製程、結構、性質以及應用結果之間的關係,結果與討論的部分使用X光繞射儀、場發掃描式電子顯微鏡、穿透式電子顯微鏡、X光光電子光譜儀、紫外光/可見光光譜儀、表面積及奈米孔徑分析儀,分析MoO3/MoS2二元及Au/MoO3/MoS2三元複合物之表面形貌、微結構、晶體結構、表面化學組成、光學性質和比表面積,並利用三極式光電化學系統進行量測,評估其產氫能力。
英文摘要 Ternary component photocatalyst based on MoS2 was synthesized to enhance the photocatalytic performance. According to one-step oxidation/exfoliation method MoO3 were formed by partial oxidation of MoS2 sheets and further exfoliate the bulk MoS2 simultaneously through hydrogen peroxide (H2O2). Proceed to the next step, adding Au NPs solution and transfer the solution into the supercritical fluid CO2 (SCF) system with ultrasonic-assisted. Combining the advantage of SCF, like low viscosity, high diffusivity and changeable physical properties by change temperature and pressure and oxidation/exfoliation method not only considerably shorten the process time but this novel process actually can be obtained desired characteristics of the photocatalyst. Based on the performance of these material, Au nanoparticle decorated MoO3/MoS2 composite photocatalysts were synthesized. The obtained these photocatalysts of all the binary and ternary component was evaluated the photocatalytic performance by hydrogen production test.
論文目次 摘要 I
誌謝 VIII
總目錄 IX
表目錄 XI
圖目錄 XII
第1章 緒論 1
1.1 前言 1
1.2 研究背景 2
1.3 二維材料及過渡金屬二硫族化物 5
1.4 研究動機與目的 8
第2章 理論背景與文獻回顧 9
2.1 二硫化鉬 9
2.1.1 二硫化鉬結構 9
2.1.2 二硫化鉬性質 10
2.2 二硫化鉬剝離法 11
2.2.1 機械剝離法 11
2.2.2 化學剝離法 12
2.2.3 超聲剝離法 13
2.2.4 部分氧化剝離法 14
2.3 超臨界流體 15
2.3.1 超臨界二氧化碳之特性 17
2.3.2 超臨界流體之技術 19
2.3.3 超臨界流體剝離法之技術 20
2.4 光催化反應 30
2.4.1 光降解 32
2.4.2 光電化學產氫 33
第3章 實驗方法與分析原理 34
3.1 實驗藥品與材料 34
3.2 實驗流程與步驟 35
3.2.1 實驗流程圖 35
3.2.2 材料之製備 36
3.2.3 光電化學實驗 39
3.3 分析儀器 40
3.3.1 場發掃描式電子顯微鏡(Field-Emission Scanning Electron Microscope) 40
3.3.2 表面積及奈米孔徑分析儀(BET Analyzer) 41
3.3.3 穿透式電子顯微鏡(Transmission electron microscope) 42
3.3.4 X光繞射儀(X-ray Diffraction Spectrometer) 43
3.3.5 X光光電子光譜儀(X-ray Photoelectron Spectrometer) 44
3.3.6 紫外光/可見光光譜儀(UV-vis Spectrophotometer) 45
第4章 結果與討論 46
4.1 材料表面形貌及微結構分析 46
4.2 晶體結構分析 55
4.3 化學鍵結分析 58
4.4 光學性質分析 63
4.5 光電化學分析 67
第5章 結論 76
第6章 參考文獻 77
參考文獻 [1] C. Chen, W. Ma, and J. Zhao, "Semiconductor-mediated photodegradation of pollutants under visible-light irradiation," Chemical Society Reviews, vol. 39, no. 11, pp. 4206-4219, 2010.
[2] A. Fujishima and K. Honda, "Electrochemical photolysis of water at a semiconductor electrode," nature, vol. 238, no. 5358, p. 37, 1972.
[3] E. Kabir, P. Kumar, S. Kumar, A. A. Adelodun, and K.-H. Kim, "Solar energy: Potential and future prospects," Renewable and Sustainable Energy Reviews, vol. 82, pp. 894-900, 2018.
[4] I. K. Konstantinou and T. A. Albanis, "TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review," Applied Catalysis B: Environmental, vol. 49, no. 1, pp. 1-14, 2004.
[5] O. Carp, C. L. Huisman, and A. Reller, "Photoinduced reactivity of titanium dioxide," Progress in solid state chemistry, vol. 32, no. 1-2, pp. 33-177, 2004.
[6] K. Biernat, A. Malinowski, and M. Gnat, "The possibility of future biofuels production using waste carbon dioxide and solar energy," 2013.
[7] J. Zhao, X. Wang, Z. Xu, and J. S. Loo, "Hybrid catalysts for photoelectrochemical reduction of carbon dioxide: a prospective review on semiconductor/metal complex co-catalyst systems," Journal of Materials Chemistry A, vol. 2, no. 37, pp. 15228-15233, 2014.
[8] P. V. Kamat, "Graphene-based nanoassemblies for energy conversion," The Journal of Physical Chemistry Letters, vol. 2, no. 3, pp. 242-251, 2011.
[9] N. Zhang, Y. Zhang, and Y.-J. Xu, "Recent progress on graphene-based photocatalysts: current status and future perspectives," Nanoscale, vol. 4, no. 19, pp. 5792-5813, 2012.
[10] X. Wang, G. Sun, N. Li, and P. Chen, "Quantum dots derived from two-dimensional materials and their applications for catalysis and energy," Chemical Society Reviews, vol. 45, no. 8, pp. 2239-2262, 2016.
[11] A. K. Geim and K. S. Novoselov, "The rise of graphene," in Nanoscience and Technology: A Collection of Reviews from Nature Journals: World Scientific, 2010, pp. 11-19.
[12] K. I. Bolotin et al., "Ultrahigh electron mobility in suspended graphene," Solid state communications, vol. 146, no. 9-10, pp. 351-355, 2008.
[13] A. A. Balandin et al., "Superior thermal conductivity of single-layer graphene," Nano letters, vol. 8, no. 3, pp. 902-907, 2008.
[14] C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene," science, vol. 321, no. 5887, pp. 385-388, 2008.
[15] X. Li et al., "Transfer of large-area graphene films for high-performance transparent conductive electrodes," Nano letters, vol. 9, no. 12, pp. 4359-4363, 2009.
[16] A. K. Geim, "Graphene: status and prospects," science, vol. 324, no. 5934, pp. 1530-1534, 2009.
[17] T. Liu, J. Ding, Z. Su, and G. Wei, "Porous two-dimensional materials for energy applications: innovations and challenges," Materials Today Energy, vol. 6, pp. 79-95, 2017.
[18] Q. Lu, Y. Yu, Q. Ma, B. Chen, and H. Zhang, "2D Transition‐metal‐dichalcogenide‐nanosheet‐based composites for photocatalytic and electrocatalytic hydrogen evolution reactions," Advanced Materials, vol. 28, no. 10, pp. 1917-1933, 2016.
[19] R. Ganatra and Q. Zhang, "Few-layer MoS2: a promising layered semiconductor," ACS nano, vol. 8, no. 5, pp. 4074-4099, 2014.
[20] R. Lv et al., "Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single-and few-layer nanosheets," Accounts of chemical research, vol. 48, no. 1, pp. 56-64, 2014.
[21] K.-A. N. Duerloo, M. T. Ong, and E. J. Reed, "Intrinsic piezoelectricity in two-dimensional materials," The Journal of Physical Chemistry Letters, vol. 3, no. 19, pp. 2871-2876, 2012.
[22] S. Bertolazzi, J. Brivio, and A. Kis, "Stretching and breaking of ultrathin MoS2," ACS nano, vol. 5, no. 12, pp. 9703-9709, 2011.
[23] A. Castellanos‐Gomez, M. Poot, G. A. Steele, H. S. Van Der Zant, N. Agraït, and G. Rubio‐Bollinger, "Elastic properties of freely suspended MoS2 nanosheets," Advanced Materials, vol. 24, no. 6, pp. 772-775, 2012.
[24] J. Pu, Y. Yomogida, K.-K. Liu, L.-J. Li, Y. Iwasa, and T. Takenobu, "Highly flexible MoS2 thin-film transistors with ion gel dielectrics," Nano letters, vol. 12, no. 8, pp. 4013-4017, 2012.
[25] A. Ambrosi, Z. Sofer, and M. Pumera, "Lithium intercalation compound dramatically influences the electrochemical properties of exfoliated MoS2," Small, vol. 11, no. 5, pp. 605-612, 2015.
[26] J. M. Yun et al., "Exfoliated and partially oxidized MoS2 nanosheets by one‐pot reaction for efficient and stable organic solar cells," Small, vol. 10, no. 12, pp. 2319-2324, 2014.
[27] L. Dong et al., "Spontaneous exfoliation and tailoring of MoS 2 in mixed solvents," Chemical Communications, vol. 50, no. 100, pp. 15936-15939, 2014.
[28] P. Anastas and N. Eghbali, "Green chemistry: principles and practice," Chemical Society Reviews, vol. 39, no. 1, pp. 301-312, 2010.
[29] M. Sihvonen, E. Järvenpää, V. Hietaniemi, and R. Huopalahti, "Advances in supercritical carbon dioxide technologies," Trends in food science & technology, vol. 10, no. 6-7, pp. 217-222, 1999.
[30] S. Padmajan Sasikala, P. Poulin, and C. Aymonier, "Prospects of Supercritical Fluids in Realizing Graphene‐Based Functional Materials," Advanced Materials, vol. 28, no. 14, pp. 2663-2691, 2016.
[31] R. B. Gupta and J.-J. Shim, Solubility in supercritical carbon dioxide. CRC press, 2006.
[32] M. McHugh and V. Krukonis, Supercritical fluid extraction: principles and practice. Elsevier, 2013.
[33] R. B. Gupta, "Supercritical fluid technology for particle engineering," in Nanoparticle technology for drug delivery: CRC Press, 2006, pp. 77-108.
[34] E. Heidaryan, T. Hatami, M. Rahimi, and J. Moghadasi, "Viscosity of pure carbon dioxide at supercritical region: Measurement and correlation approach," The Journal of Supercritical Fluids, vol. 56, no. 2, pp. 144-151, 2011.
[35] J. M. Dobbs, J. M. Wong, and K. P. Johnston, "Nonpolar co-solvents for solubility enhancement in supercritical fluid carbon dioxide," Journal of Chemical and Engineering Data, vol. 31, no. 3, pp. 303-308, 1986.
[36] K. Byrappa, S. Ohara, and T. Adschiri, "Nanoparticles synthesis using supercritical fluid technology–towards biomedical applications," Advanced drug delivery reviews, vol. 60, no. 3, pp. 299-327, 2008.
[37] S. Stankovich et al., "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide," carbon, vol. 45, no. 7, pp. 1558-1565, 2007.
[38] G. Hu, L. Yi, and C. Liu, "Supercritical N, N-dimethylformamide exfoliation of the layered bulk titanate material into titania nanosheets," The Journal of Supercritical Fluids, vol. 72, pp. 59-67, 2012.
[39] C. Liu and G. Hu, "Effect of nitric acid treatment on the preparation of graphene sheets by supercritical N, N-dimethylformamide exfoliation," Industrial & Engineering Chemistry Research, vol. 53, no. 37, pp. 14310-14314, 2014.
[40] J.-H. Jang, D. Rangappa, Y.-U. Kwon, and I. Honma, "Direct preparation of 1-PSA modified graphene nanosheets by supercritical fluidic exfoliation and its electrochemical properties," Journal of Materials Chemistry, vol. 21, no. 10, pp. 3462-3466, 2011.
[41] A. Hadi, J. Karimi-Sabet, S. M. A. Moosavian, and S. Ghorbanian, "Optimization of graphene production by exfoliation of graphite in supercritical ethanol: A response surface methodology approach," The Journal of Supercritical Fluids, vol. 107, pp. 92-105, 2016.
[42] D. Rangappa et al., "Rapid and Direct Conversion of Graphite Crystals into High‐Yielding, Good‐Quality Graphene by Supercritical Fluid Exfoliation," Chemistry–A European Journal, vol. 16, no. 22, pp. 6488-6494, 2010.
[43] C. Liu, G. Hu, and H. Gao, "Preparation of few-layer and single-layer graphene by exfoliation of expandable graphite in supercritical N, N-dimethylformamide," The Journal of Supercritical Fluids, vol. 63, pp. 99-104, 2012.
[44] N.-W. Pu, C.-A. Wang, Y. Sung, Y.-M. Liu, and M.-D. Ger, "Production of few-layer graphene by supercritical CO2 exfoliation of graphite," Materials Letters, vol. 63, no. 23, pp. 1987-1989, 2009.
[45] X. Zheng, Q. Xu, J. Li, L. Li, and J. Wei, "High-throughput, direct exfoliation of graphite to graphene via a cooperation of supercritical CO 2 and pyrene-polymers," Rsc Advances, vol. 2, no. 28, pp. 10632-10638, 2012.
[46] G. Xu et al., "Preparation of graphene oxide/polyaniline nanocomposite with assistance of supercritical carbon dioxide for supercapacitor electrodes," Industrial & Engineering Chemistry Research, vol. 51, no. 44, pp. 14390-14398, 2012.
[47] X. Zheng et al., "Modification of graphene oxide with amphiphilic double-crystalline block copolymer polyethylene-b-poly (ethylene oxide) with assistance of supercritical CO2 and its further functionalization," The Journal of Physical Chemistry B, vol. 115, no. 19, pp. 5815-5826, 2011.
[48] M.-T. Lee, C.-Y. Fan, Y.-C. Wang, H.-Y. Li, J.-K. Chang, and C.-M. Tseng, "Improved supercapacitor performance of MnO 2–graphene composites constructed using a supercritical fluid and wrapped with an ionic liquid," Journal of Materials Chemistry A, vol. 1, no. 10, pp. 3395-3405, 2013.
[49] H. Gao and G. Hu, "Graphene production via supercritical fluids," RSC Advances, vol. 6, no. 12, pp. 10132-10143, 2016.
[50] Y. Gao et al., "Ultrasonic-assisted production of graphene with high yield in supercritical CO2 and its high electrical conductivity film," Industrial & Engineering Chemistry Research, vol. 53, no. 7, pp. 2839-2845, 2014.
[51] L. Li et al., "Preparation of graphene nanosheets by shear-assisted supercritical CO2 exfoliation," Chemical Engineering Journal, vol. 284, pp. 78-84, 2016.
[52] Y. Wang, C. Zhou, W. Wang, and Y. Zhao, "Preparation of two dimensional atomic crystals BN, WS2, and MoS2 by supercritical CO2 assisted with ultrasound," Industrial & Engineering Chemistry Research, vol. 52, no. 11, pp. 4379-4382, 2013.
[53] J. Liu et al., "Preparation of MoS2‐Polyvinylpyrrolidone Nanocomposites for Flexible Nonvolatile Rewritable Memory Devices with Reduced Graphene Oxide Electrodes," Small, vol. 8, no. 22, pp. 3517-3522, 2012.
[54] X. Tong, Y. Qi, J. Chen, N. Wang, and Q. Xu, "Supercritical CO2‐Assisted Reverse‐Micelle‐Induced Solution‐Phase Fabrication of Two‐Dimensional Metallic 1T‐MoS2 and 1T‐WS2," ChemNanoMat, vol. 3, no. 7, pp. 466-471, 2017.
[55] M. Q. Yang, M. Gao, M. Hong, and G. W. Ho, "Visible‐to‐NIR Photon Harvesting: Progressive Engineering of Catalysts for Solar‐Powered Environmental Purification and Fuel Production," Advanced Materials, vol. 30, no. 47, p. 1802894, 2018.
[56] C. Li, Y. Xu, W. Tu, G. Chen, and R. Xu, "Metal-free photocatalysts for various applications in energy conversion and environmental purification," Green Chemistry, vol. 19, no. 4, pp. 882-899, 2017.
[57] S. N. Frank and A. J. Bard, "Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder," Journal of the American Chemical Society, vol. 99, no. 1, pp. 303-304, 1977.
[58] S. N. Frank and A. J. Bard, "Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders," The journal of physical chemistry, vol. 81, no. 15, pp. 1484-1488, 1977.
[59] M. Pelaez et al., "A review on the visible light active titanium dioxide photocatalysts for environmental applications," Applied Catalysis B: Environmental, vol. 125, pp. 331-349, 2012.
[60] J. Tauc, R. Grigorovici, and A. Vancu, "Optical properties and electronic structure of amorphous germanium," physica status solidi (b), vol. 15, no. 2, pp. 627-637, 1966.
[61] C.-W. Chu, F. N. I. Sari, J. C.-R. Ke, and J.-M. Ting, "A novel ternary nanocomposite for improving the cycle life and capacitance of polypyrrole," Applied Surface Science, vol. 462, pp. 526-539, 2018.
[62] W. Liu, Q. Xu, W. Cui, C. Zhu, and Y. Qi, "CO2‐Assisted Fabrication of Two‐Dimensional Amorphous Molybdenum Oxide Nanosheets for Enhanced Plasmon Resonances," Angewandte Chemie, vol. 129, no. 6, pp. 1622-1626, 2017.
[63] R. Murugan, A. Ghule, C. Bhongale, and H. Chang, "Thermo-Raman investigations on structural transformations in hydrated MoO3," Journal of Materials Chemistry, vol. 10, no. 9, pp. 2157-2162, 2000.
[64] N. Thi Xuyen and J. M. Ting, "Hybridized 1T/2H MoS2 having controlled 1T concentrations and its use in supercapacitors," Chemistry–A European Journal, vol. 23, no. 68, pp. 17348-17355, 2017.
[65] C. Zhu, Q. Xu, W. Liu, and Y. Ren, "CO2-assisted fabrication of novel heterostructures of h-MoO3/1T-MoS2 for enhanced photoelectrocatalytic performance," Applied Surface Science, vol. 425, pp. 56-62, 2017.
[66] P. Kumar, M. Singh, and G. Reddy, "Oxidation of core–shell MoO2–MoS2 nanoflakes in different O2 ambience," Materials Research Express, vol. 4, no. 3, p. 036405, 2017.
[67] J. Wan, X. Du, E. Liu, Y. Hu, J. Fan, and X. Hu, "Z-scheme visible-light-driven Ag3PO4 nanoparticle@ MoS2 quantum dot/few-layered MoS2 nanosheet heterostructures with high efficiency and stability for photocatalytic selective oxidation," Journal of catalysis, vol. 345, pp. 281-294, 2017.
[68] T. P. Nguyen, W. Sohn, J. H. Oh, H. W. Jang, and S. Y. Kim, "Size-dependent properties of two-dimensional MoS2 and WS2," The Journal of Physical Chemistry C, vol. 120, no. 18, pp. 10078-10085, 2016
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-07-24起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-07-24起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw