進階搜尋


下載電子全文  
系統識別號 U0026-2008201916080500
論文名稱(中文) 低價位雙頻GNSS接收器即時動態定位效能分析
論文名稱(英文) Performance Assessment of RTK Positioning with a Multi-GNSS Dual-frequency Low-cost Receiver
校院名稱 成功大學
系所名稱(中) 測量及空間資訊學系
系所名稱(英) Department of Geomatics
學年度 107
學期 2
出版年 108
研究生(中文) 王文喆
研究生(英文) Wen-Zhe Wang
學號 P66063019
學位類別 碩士
語文別 英文
論文頁數 60頁
口試委員 指導教授-楊名
口試委員-史天元
口試委員-江凱偉
口試委員-陳國華
中文關鍵字 全球導航衛星系統  即時動態定位  低成本雙频接收机 
英文關鍵字 Multi-GNSS  Real-time kinematic  Low-cost  Dual-frequency 
學科別分類
中文摘要 即時動態定位 (RTK) 是一種被廣泛運用的衛星定位技術,可以提供高精度即時定位結果,通常定位精度在公分級。隨著全球導航衛星系統(GNSS)的快速發展,多系統即時動態定位技術(GNSS-RTK)已在眾多高精度位置需求領域取得廣泛運用,如移動製圖,自動駕駛等。但是,高等级GNSS接收機設備價格昂貴,過高的設備成本使得RTK定位的應用範圍受到局限。因此,人們長期以來一直期望能夠使用低成本GNSS接收機實現高精度RTK定位。過去,低成本的GNSS接收機多是單頻,由于單頻接收機無法利用不同頻率觀測量間的線性組合從而消除電離層影響,並且在週跳偵測上較為困難,因此其RTK定位效能仍有不足。隨著技術的不斷發展,如今,低成本的雙頻GNSS接收機已經面向市場。因此在這項研究中,我們使用一臺低成本的Allystar雙頻GNSS接收機(可接收GPS, QZSS, BDS三星系)進行RTK定位,評估其定位效能並將其與使用高規格的大地型GNSS接收機的定位效能比較,通過靜態和動態實驗,可以得出結論:(1)觀測量品質上, Allystar接收機能提供品质较好的载波相位觀測量,其GPS 和QZSS L1, BDS卫星的B1, B2相位觀測量精度达到1mm。(2)在静态实验中,Allystar接收机能够实现公分級的定位效果, Allystar接收機RTK定位解精度能夠與高規格GNSS接收機相比。(3)动态实验显示,天線品質是影响Allystar接收機RTK定位效能的一個重要因素,當配備天線從高規格降低到低規格時,與高等級接收機相比,Allystar接收機觀測量產生大量週跳,週波值解算成功率也大幅降低,公分级定位解所占比例少于50%。
英文摘要 Real-time kinematic (RTK) positioning can achieve high-accuracy (centimeter level) positioning results. With the rapid development of global navigation satellite systems (GNSS), GNSS-RTK has been widely used in many fields, such as mobile mapping and autonomous driving. However, for high-accuracy GNSS-RTK positioning, the scope of its application is still limited by the cost. Thus, it has been long expected that high-accuracy positioning with low-cost GNSS receivers shall be realized. In the past, most low-cost GNSS receivers only produced single frequency signals. With the advance in technology, low-cost dual-frequency GNSS receiver has come into the market. In this study, we use a low-cost Allystar GNSS receiver to process dual-frequency measurements from GPS, QZSS, and Beidou. Positioning performances achieved by using the low-cost receiver are evaluated and then compared to those achieved by using a geodetic-grade GNSS receiver. With static and kinematic experiments, it can be concluded that (1) the low-cost Allystar receiver is able to provide good quality carrier phase measurements on GPS L1, QZSS L1, Beidou B1 and B2 frequencies, and the precisions of the carrier phase measurements on these frequencies are 1mm. (2) in the static test, RTK solutions using the low-cost Allystar receiver can achieve centimeter level accuracy, the positioning performance can be comparable to those of a high-grade geodetic receiver. (3) antenna quality is an important issue for RTK performance of the Allystar receiver in the kinematic test. When the antenna equipped by the Allystar receiver degrades from a high-grade to a low-cost antenna, frequent cycle slips are detected, the percentage of successful ambiguity resolution decreased significantly and less than 50% of the positioning solutions can achieve centimeter-level accuracy.
論文目次 摘要…………………I
Abstract…………………………II
Acknowledgement……………III
Content……………………………IV
Chapter 1 Introduction……………1
§1-1Background……………1
§1-2 Motivation and objective……………4
Chapter 2 Satellite measurements and systematic errors……………6
§2-1 Raw satellite measurements……………6
§2-1-1 Code pseudorange……………6
§2-1-2 Carrier phase……………7
§2-2 Systematic errors……………8
§2-2-1 Ionospheric delay……………8
§2-2-2 Tropospheric delay……………10
§2-2-3 Orbital uncertainty……………12
§2-2-4 Satellite antenna phase center offset……………13
§2-2-5 Receiver antenna phase center offset and variation……………14
§2-2-6 Earth rotational effect……………15
§2-2-7 Multipath and receiver noise……………15
§2-3 Double difference measurements……………16
§2-3-1 Single difference between receivers……………17
§2-3-2 Single difference between satellites……………18
§2-3-3 Double difference……………19
Chapter 3 Multi-GNSS Dual-frequency RTK Positioning Algorithm……………21
§3-1 multi-GNSS combination……………21
§3-1-1 Time reference system……………21
§3-1-2 Coordinate reference system……………23
§3-1-3 Inter-system biases (ISBs)……………24
§3-1-4 Pivot satellite selection……………24
§3-2 Kalman filter……………25
§3-3 Integer ambiguity resolution……………28
§3-3-1 The LAMBDA method……………29
§3-3-2 Ratio test……………32
§3-4 Full and partial ambiguity fixing……………33
§3-5 Data processing strategy……………34
Chapter 4 Experimental Results and Analysis……………36
§4-1 Zero-baseline test……………37
§4-2 Static test……………43
§4-3 Kinematic test……………47
Chapter 5 Conclusions……………54
References………………………56
參考文獻 Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., Ware, R. H. (1992)
GPS Meteorology: remote sensing of atmospheric water vapor using the global positioning system. Journal of Geophysical Research: Atmospheres 97 (D14):15787-15801

Cao, W. (2009) Multi-frequency GPS and Galileo kinematic positioning with partial ambiguity fixing (report no. 20285). MsC. Thesis, University of Calgary, Calgary, Alberta.

Chu, F.-Y. and Yang, M. (2014) GPS/Galileo long baseline computation: method and performance analyses. GPS Solutions 18 (2): 263-272.

Chu, F.-Y., Yang, M., Chen, Y.-T. (2019) GEO-pivot carrier ambiguity resolution: a method for instantaneous ambiguity resolution in mid-low-latitude regions. GPS Solutions 23: 107

CSNO (2013) Beidou Navigation Satellite System Open Service Performance Standard (Version 1.0). China Satellite Navigation Office, Beijing, China.

de Jonge, P., Tiberius, CCJM. (1996) The LAMBDA method for Integer ambiguity estimation: implementation aspects. Delft geodetic computing center LGR series, Delft university of technology, The Netherlands.

Deng, C., Tang, W., Liu, J., Shi, C. (2014) Reliable single-epoch ambiguity resolution for short baseline using combined GPS/Beidou system. GPS Solutions 18 (3):375-386.

Duan, J., Bevis, M., Fang, P., Bock, Y., Chiswell, S., Businger, S., Rocken, C., Solheim, F., Hove, T.V., Ware, R., McClusky S., Herring, T.A., King, R.W. (1996) GPS Meteorology: Direct Estimation of the Absolute Value of Precipitable Water. Journal of Applied Meteorology 35 (6):830-838.

Gelb, A, (editor), 1979. Applied Optimal Estimation, M.I.T. Press, Cambridge, Massachusetts.

Gioia, C., Gaglione, S., Borio, D. (2015) Inter-system Bias: Stability and Impact on Multi-constellation Positioning. In: IEEE Metrology for Aerospace (MetroAeroSpcae), Benevento, Italy, June 4-5, pp 103-108.

Goad, C.C. and Goodman, L. (1974). A modified Hopfield tropospheric reflection correction model. In: American Geophysical Union annual fall meeting, San Francisco, California, December 12-17.

Hegarty, C., Powers, E., Fonville, B. (2004) Accounting for timing biases between GPS, moderinized GPS, and Galileo signals. In: Proceedings of 36th annual Precise Time and Time Interval (PTTI) meeting, Washingtin, DC, 7-9 Dec, pp. 307-317.

Hofmann-Wellenhof, B., Lichtenegger, H., Wasle, E. (2008) GNSS – Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and more. Springer, Vienna.

Hopfield, HS. (1969) Two-quartic tropospheric refractivity profile for correcting satellite data. Journal of Geophysical Research 74 (18):4487-4499.

Julien, O., Alves, P., Cannon, M. E., Zhang, W. (2003) A Tightly Coupled GPS/GALILEO Combination for Improved Ambiguity Resolution. In: Proceedings of the European Navigation Conference GNSS (ENC-GNSS’03) Graz, Austria, April 22-25. 14 pages.

Kaplan, E., Hegarty, C. (2006) Understanding GPS: Principles and Applications, 2nd edition. Artech House.

Kleusberg, A., Teunissen, P.J.G. (1996) GPS for geodesy. Springer-verlag, Berlin.

Koch, K.R. (1999) Parameter estimation and hypothesis testing in linear models, 2nd. Springer, New York.

Kouba, J., He ́roux, P. (2001) Precise point positioning using IGS orbit and clock products. GPS solutions 5 (2):12-28.

Leick, A. (1995) GPS satellite surveying, 2nd edition. John Willey & Sons, New York.

Leick, A. (2004) GPS satellite surveying 3rd edition. John Willey $ Sons, New York.

Leick, A., Rapoport, L., Tatarnikov, D. (2015) GPS satellite surveying, 4th edition. John Willey & Sons, Hoboken, New Jersey.

Li, H., Dang, Y., Bei, J., Yang, F. (2013) Research on spatio tempora unification of BDS/GPS/GLONASS multi-mode fusion navigation and positioning. Journal of geodesy and geodynamics 33 (4): 73-78.

Ma, L.H., Han, Y.B., Yin, Z.Q. (2009) Periodicities in Global Mean TEC from GNSS Observations. Earth, Moon, and Planets 105 (1): 3-10.

Mader, GL. (1999) GPS antenna calibration at the national geodetic survey. GPS solutions 3 (1):50-58.

Marucci, A., Colantoni, A., Zambon, I., Egidi, G. (2017) Precision farming in hilly areas: The use of network RTK in GNSS technology. Agriculture (7): 1-10

Mongredien, C., Doyen, J.P., Strom, M., Ammann, D. (2016) Centimeter-Level Positioning for UAVs and Other Mass-Market Applications. In: Proceedings of the 29th International Technical Meeting of the Satellite Division of the Insitute of Navigation (ION GNSS+ 2016), Portland, OR, September 12-16, pp 1441-1454.

Misera, P. and Enge, P. (2006) Global positioning system: signals, measurements and performance, 2nd edition. Ganga-Jamuna Press, Lincoln, Massachusetts.

Nadarajah, N., Teunissen, P.J.G., Sleewaegen, J.-M., Montenbruck, O., (2015) The mixed receiver Beidou inter-satellite-type bias and its impact on RTK positioning. GPS Solutions 19 (3): 357-368.

Odolinski, R., Teunissen, P.J.G., Odijk, D. (2015) Combined BDS, Galileo, QZSS and GPS single-frequency RTK positioning. Measurement Science Technology 19 (1) 151-63

Odolinski, R., Teunissen, P.J.G., Odijk, D. (2015) Combined GPS + BDS for short to long baseline RTK positioning. Measurement Science Technology 26 (4) 045801

Odolinski R., Teunissen, P.J.G. (2017) Low-cost, high-precision, single-frequency GPS-BDS RTK positioning. GPS Solutions 21 (3): 1315-1330

Parkingson, B., Spillker, J., Axelrad, P., Enge, P. (1996) Global Positioning System: Theory and Applications, Volume I. American Institute of Aeronautics and Astronautics, Inc. 370 L’Enfant Promenade, SW, Washington, DC

Paziewski, J. and Wielgosz, P. (2015) Accounting for Galileo-GPS inter-system biases in precise satellite positioning. Journal of Geodesy 89 (1): 81-93.

Saastamoinen, J. (1973): Contribution to the theory of atmospheric refraction. Bulletin Ge ́ode ́sique, 107(1): 13-34

Seeber, G. (2003) Satellite geodesy, 2nd edition. Walter de Gruyter, Germany.

Shrestha, S.M. (2003). Investigations into the Estimation of Tropospheric Delay and Wet Refractivity Using GPS Measurements. University of Calgary, Canada.

Sickle, J.V. (2001). GPS for Land Surveyors, 2nd edition. Sleeping Bear Press, Chelsea, Michigan.

Strang, G. (1988) Linear algebra and its applications 3rd edition. Thomson learning, inc., United States.

Teunissen, P.J.G. (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. Journal of Geodesy 70 (1): 65-82.

Teunissen, P.J.G. and Montenbruck, O. (eds.) (2017) Springer handbook of global navigation satellite systems. Springer, Cham, Switzerland.

Teunissen, P.J.G. and Odijk, D. (2003) Rank-defect integer estimation and phase-only modernized GPS ambiguity resolution. Journal of Geodesy 76 (9): 523-535.

Teunissen, P.J.G. and Verhagen, S. (2009) The GNSS ambiguity raio-test revisited: a better-way of using it. Survey Review 41 (312): 138-151.

Verhagen, S., Teunissen P.J.G and Odijk, D. (2012) The future of single-frequency integer ambiguity resolution.

Wei, Z. (2008) China geodetic coordinate system 2000 and its comparison with WGS84. Journal of geodesy and geodynamics 28 (5): 1-5.

Xu, G. and Xu, Y. (2016) GPS: Theory, Algorithms and Applications, 3rd edition. Springer, Berlin, Heidelberg.

Zhang, J. and Lachapelle, G. (2001) Precise estimation of residual tropospheric delays using a regional GPS network for real-time kinematic applications. Journal of Geodesy 75 (5): 255-266.

Zhang, W., Cannon, M.E., Julien, O., Alves, P. (2003) Investigation of Combined GPS/GALILEO Cascading Ambiguity Resolution Schemes. In: Proceedings of the 16th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS/GNSS 2003), Portland, OR, September 9-12, pp 2599-2610.

Zumberge, J.F., Heflin, M.B., Jefferson, D.C., Watkins, M.M., Webb, F.H. (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research: Solid Earth 102 (B3): 5005-5017.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-22起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-22起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw