進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2008201915475200
論文名稱(中文) 不完美界面之彈性波與表面波波傳行為分析
論文名稱(英文) Elastic wave behavior across media with imperfect interface
校院名稱 成功大學
系所名稱(中) 土木工程學系
系所名稱(英) Department of Civil Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 趙詳傑
研究生(英文) Hsiang-Chieh Chao
學號 N66064022
學位類別 碩士
語文別 中文
論文頁數 120頁
口試委員 口試委員-葉超雄
口試委員-吳光鐘
口試委員-馬劍清
口試委員-蘇于琪
指導教授-陳東陽
中文關鍵字 不完美界面  彈性體波  彈性表面波 
英文關鍵字 imperfect interface  elastic body wave  elastic surface wave 
學科別分類
中文摘要 由兩種以上介質組成複合材料的波傳研究廣泛用於各種領域,其中就包含地震波的研究,而複合材料的交界面在現實狀況並不如數學設想般的完美,因此本文將考慮界面真實情形,分析不完美界面的波傳行為,分別推導體波通過不完美界面與表面波介質交界面為不完美界面的波傳方程,比較交界面為完美界面時的差別,藉此探討不完美界面彈性波之數學波傳結果;當彈性體波通過不完美界面時,司乃耳定律依然成立,並使折射波與反射波產生相位差,同時折射波與反射波振幅會與波傳通過完美界面時不同;HS型不完美界面從數學角度能有效的抵禦表面波傳遞,但考量真實尺度的界面材料係數與地震波的頻率,不完美界面應用於地震表面波防制的可行性偏低。
英文摘要 Elastic wave theory of composite materials composed of two or more kinds of materials are widely used in various studies, including the seismology. The interface of composite materials in reality may differ from that of ideal assumptions. Therefore, in this thesis, we consider actual conditions of the interface, and investigate the propagating behavior of both elastic body wave and elastic surface wave with the addition of imperfect interface. When the elastic body wave passes through the imperfect interface, Snell's law remains unchanged, which means that the direction of wave propagation is exactly the same as the direction of the wave passing through the perfect interface. However, the addition of imperfect interface can lead to the phase differences between the refracted wave, the reflected wave and the incident wave. In addition, the amplitude of the refracted and reflected waves will also be different. Moreover, the high stiffness imperfect interface can effectively resist the surface wave propagation from the mathematical point of view, but is less feasible for seismic surface waves when the real surface elastic constants and the low frequency regime of seismic waves are considered.
論文目次 中文摘要 i
Abstract iii
誌謝 vii
目錄 ix
圖目錄 xi
第一章 緒論 1
1.1 文獻回顧 1
1.2 研究動機 3
1.3 論文簡介 4
第二章 彈性波傳理論與不完美界面介紹 7
2.1 地震波簡介 7
2.2 彈性波傳理論 8
2.2.1 彈形波傳運動方程 9
2.2.2 平面時間諧和波 11
2.2.3 相位與相位差 13
2.3 不完美界面 14
2.3.1 廣義不完美界面 15
2.3.2 LS型不完美界面 17
2.3.3 HS型不完美界面 19
第三章 不完美界面之彈性體波分析 23
3.1 不完美界面SH波分析 23
3.1.1 SH波通過HS型不完美界面 23
3.1.2 SH波通過LS型不完美界面 33
3.2 不完美界面P波與SV波分析 38
3.2.1 P波或SV波通過HS型不完美界面 39
3.2.2 P波或SV波通過LS型不完美界面 43
3.3 不完美界面體波討論 46
3.3.1 相位差與物理模型關聯 47
3.3.2 探討不完美界面波傳相位差原因 48
3.3.3 折射波與反射波相位差變化討論 52
3.3.4 探討HS型不完美界面材料參數之正負異號與波傳關連 53
3.4 不完美界面之體波波傳分析總結 55
第四章 不完美界面之表面波傳分析 59
4.1 雷利波 (Rayleigh Wave) 59
4.2 不完美界面雷利波 63
4.2.1 LS型不完美界面雷利波 63
4.2.2 HS型不完美界面雷利波 64
4.3 洛夫波 (Love wave) 67
4.4 不完美界面洛夫波 71
4.4.1 LS型不完美界面洛夫波 71
4.4.2 HS型不完美界面洛夫波 74
4.5 不完美界面之彈性表面波結論 81
第五章 結論與未來展望 83
5.1 結論 83
5.2 未來展望 84
參考文獻 86
附錄A:HS型不完美界面之P波與SV波 89
附錄B:LS型不完美界面之P波與SV波 109
參考文獻 Achaoui, Y., T. Antonakakis, S. Brule, R. Craster, S. Enoch and S. Guenneau, Clamped seismic metamaterials: ultra-low frequency stop bands, New Journal of Physics 19(6): 063022, 2017.
Achenbach, J., Wave Propagation in Elastic Solids, 1973.
Benveniste, Y., The effective mechanical behaviour of composite materials with imperfect contact between the constituents, Mechanics of Materials 4(2): 197-208, 1985.
Benveniste, Y., A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media, Journal of the Mechanics and Physics of Solids 54(4): 708-734, 2006.
Brillouin, L., Wave Propagation in Periodic Structures: electric filters and crystal lattices, 1953.
Chen, T., M.-S. Chiu and C.-N. Weng, Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids, Journal of Applied Physics 100(7): 074308, 2006.
Chen, T., G. J. Dvorak and C. Yu, Solids containing spherical nano-inclusions with interface stresses: effective properties and thermal–mechanical connections, International Journal of Solids and Structures 44(3-4): 941-955, 2007.
Duan, H., X. Yi, Z. Huang and J. Wang, A unified scheme for prediction of effective moduli of multiphase composites with interface effects. Part I: Theoretical framework, Mechanics of Materials 39(1): 81-93, 2007.
Golub, M. V. and A. Boström, Interface damage modeled by spring boundary conditions for in-plane elastic waves, Wave Motion 48(2): 105-115, 2011.
Graff, K., Wave Motion in Elastic Solids, 1975.
Gu, S.-T., J.-T. Liu and Q.-C. He, Size-dependent effective elastic moduli of particulate composites with interfacial displacement and traction discontinuities, International Journal of Solids and Structures 51(13): 2283-2296, 2014.
Gu, S. and Q.-C. He, Interfacial discontinuity relations for coupled multifield phenomena and their application to the modeling of thin interphases as imperfect interfaces, Journal of the Mechanics and Physics of Solids 59(7): 1413-1426, 2011.
Gurtin, M. E. and A. I. Murdoch, A continuum theory of elastic material surfaces, Archive for Rational Mechanics and Analysis 57(4): 291-323, 1975.
Gurtin, M. E. and A. I. Murdoch, Effect of surface stress on wave propagation in solids, Journal of Applied Physics 47(10): 4414-4421, 1976.
Hashin, Z., Thermoelastic properties of fiber composites with imperfect interface, Mechanics of Materials 8(4): 333-348, 1990.
Hashin, Z., Thin interphase/imperfect interface in elasticity with application to coated fiber composites, Journal of the Mechanics and Physics of Solids 50(12): 2509-2537, 2002.
Huang, H.-H. and C.-T. Sun, Anomalous wave propagation in a one-dimensional acoustic metamaterial having simultaneously negative mass density and Young’s modulus, The Journal of the Acoustical Society of America 132(4): 2887-2895, 2012.
Mei, J. and Y. Wu, Controllable transmission and total reflection through an impedance-matched acoustic metasurface, New Journal of Physics 16(12): 123007, 2014.
Miniaci, M., A. Krushynska, F. Bosia and N. M. Pugno, Large scale mechanical metamaterials as seismic shields, New Journal of Physics 18(8): 083041, 2016.
Murdoch, A., The propagation of surface waves in bodies with material boundaries, Journal of the Mechanics and Physics of Solids 24(2-3): 137-146, 1976.
Pyrak-Nolte, L. J., J. Xu and G. M. Haley, Elastic interface waves propagating in a fracture, Physical Review Letters 68(24): 3650, 1992.
Pyrak‐Nolte, L. J. and N. G. Cook, Elastic interface waves along a fracture, Geophysical Research Letters 14(11): 1107-1110, 1987.
Rokhlin, S. and Y. Wang, Analysis of boundary conditions for elastic wave interaction with an interface between two solids, The Journal of the Acoustical Society of America 89(2): 503-515, 1991.
Ru, Y., G. Wang and T. Wang, Diffractions of elastic waves and stress concentration near a cylindrical nano-inclusion incorporating surface effect, Journal of Vibration and Acoustics 131(6): 061011, 2009.
Schoenberg, M., Elastic wave behavior across linear slip interfaces, The Journal of the Acoustical Society of America 68(5): 1516-1521, 1980.
Sharma, P. and S. Ganti, Size-dependent Eshelby's tensor for embedded nano-inclusions incorporating surface/interface energies, Journal of Applied Mechanics 71(5): 663-671, 2004.
Shen, X., C.-T. Sun, M. V. Barnhart and G. Huang, Elastic wave manipulation by using a phase-controlling meta-layer, Journal of Applied Physics 123(9): 091708, 2018.
Shuttleworth, R., The surface tension of solids, Proceedings of the Physical Society. Section A 63(5): 444, 1950.
Su, Y.-C. and C.-T. Sun, Wave Amplification in Double Negative Elastic Metamaterials, 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2015.
Velasco, V. and F. Garcia-Moliner, Surface effects in elastic surface waves, Physica Scripta 20(1): 111, 1979.
Wang, G., Diffraction of plane compressional wave by a nanosized spherical cavity with surface effects, Applied Physics Letters 90(21): 211907, 2007.
Wang, G., Diffraction of shear waves by a nanosized spherical cavity, Journal of Applied Physics 103(5): 053519, 2008.
Wang, G., T. Wang and X. Feng, Surface effects on the diffraction of plane compressional waves by a nanosized circular hole, Applied Physics Letters 89(23): 231923, 2006.

Yu, N., P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso and Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction, Science 334(6054): 333-337, 2011.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-08-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw