進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2008201915445300
論文名稱(中文) 廢鋅錳電池電極粉末之金屬資源再生
論文名稱(英文) Recovery of metals from electrode powder of spent zinc manganese batteries
校院名稱 成功大學
系所名稱(中) 資源工程學系
系所名稱(英) Department of Resources Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 張朕璽
研究生(英文) Chen-Hsi Chang
學號 N46061193
學位類別 碩士
語文別 中文
論文頁數 108頁
口試委員 指導教授-陳偉聖
口試委員-王文裕
口試委員-王立邦
中文關鍵字 濕法冶金  電極粉末  酸溶浸漬  溶劑萃取  皂化  化學沉澱  電解析出 
英文關鍵字 hydrometallurgy  Zn-Mn battery  leaching  solvent extraction  electrorefining 
學科別分類
中文摘要 本研究針對廢鋅錳電池電極粉末進行金屬資源再生研究,將粉末中之有價金屬進行提取與純化,並重新回到工業生產端。實驗主要分為三大部分,第一部分為電極粉末之特性分析與酸浸漬,前處理後之粉料藉由表面分析、晶相分析及化學成分分析,作為後續研究規劃依據。再以兩階段之浸漬實驗針對鋅錳作初步分離。第一階段使用HCl作為直接酸浸漬,可將粉料中99.5%鋅及9.5%錳全數移除;第二階段則使用H2SO4及維生素C將殘餘90%以上錳以還原酸浸漬之方式與碳粉分離。兩階段之浸漬參數各別套入浸漬動力學模型並研究其反應機制。
第二部分為純化分離,主要透過皂化後之萃取劑Na-D2EHPA針對第一階段含鋅浸漬液進行單階萃取,將鋅離子選擇性萃取至有機相,再以H2SO4水溶液進行反萃。萃取流程使用分離係數(Separtion Factor)、分配比(Distribution Ratio)、萃取效率作為指標數據。
第三部分為金屬產物析出研究,根據分離流程不同,可分為兩種方法。第一為化學沉澱法,將萃餘液及反萃液調整至適當pH值並沉澱出氫氧化物,後續經過煅燒得到氧化鋅;第二種為電解二氧化錳,將還原浸漬之浸漬液,以電解精煉方式析出電解級二氧化錳(EMD)。最終產物ZnO之純度為97.6%、Mn(OH)2之純度為94.39%、電解級二氧化錳(EMD)純度為99.7%。
英文摘要 In this study, the zinc-manganese batteries are recovered by using hydrometallurgy method, which can be separated, into three major parts, including two-stage acid leaching system, solvent extraction, and final refining to segregate complex elements from the spent Zn-Mn battery. The goal of this research is concentrated on the recovery of zinc and manganese from the electrode powder. In consideration of the serious co-extraction characteristic from zinc and manganese system, two stages leaching is first carried out before the solvent extraction. After the pretreatment process, the spent electrode powder is first deposed of with first stage leaching procedure. After that, 99.5% of zinc and the small amount of purity are transferred into the liquid phase; more than 90% of Manganese is maintained in the solid phase eventually. In the second stage leaching process, the rest manganese is dissolved by reductive acid leaching. Thereafter, in the separation and purification step, the solvent extraction is investigated. The parameters such as extractant concentration, extracting time, equilibrium pH value and organic-aqueous ratio (O/A) are all analyzed in detail. Finally, chemical precipitation and electrorefining are used in the refining process. After calcination, the ZnO is obtained in high-purity level with 97.6% quality and (EMD) MnO2 is obtained in high-purity level with 99.7% quality as well.
論文目次 摘要 I
Extended Abstract II
目錄 IX
圖目錄 XII
表目錄 XIV
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
第二章 理論基礎與文獻回顧 3
2.1 鋅錳電池之概論 3
2.2 鋅錳金屬性質及市場現況 5
2.2.1 鋅之物理化學特性 5
2.2.2 鋅之市場現況 6
2.2.3 錳之物理化學特性 8
2.2.4 錳之市場現況 9
2.3 資源化冶金技術概述 11
2.4 鋅錳電池電極粉末之酸溶浸漬反應理論 19
2.4.1 浸漬熱力學 19
2.4.2 浸漬動力學 22
2.5 鋅錳電池電極粉末之金屬分離純化理論 25
2.5.1 溶劑萃取法 25
2.5.2 電解精煉技術 31
2.5.3 化學沉澱分離 32
第三章 實驗方法與步驟 33
3.1 實驗藥品 33
3.2 實驗設備及分析儀器 34
3.3 實驗架構 37
3.4 實驗流程 38
第四章 結果與討論 42
4.1 電極粉末特性分析 42
4.1.1 表面特性分析 42
4.1.2 化學成分分析 44
4.1.3 粉末晶相分析 45
4.2 電極粉末浸漬實驗 46
4.2.1 電極粉末直接酸浸漬溶出 46
4.2.2 還原酸浸漬實驗 54
4.2.3 酸浸漬動力學 63
4.2.4 酸浸漬小結 73
4.3金屬純化分離實驗結果 74
4.3.1 皂化溶劑萃取實驗-D2EHPA系統 74
4.3.2 電解分離純化實驗 87
4.3.3 金屬純化分離小結 89
4.4資源化產品 90
4.4.1 金屬化合物析出 90
4.4.2 產品特性分析 93
第五章 結論與建議 95
5-1 結論 95
5-2 建議之回收流程 97
參考文獻 98
參考文獻 [1] 行政院環境保護署環境資源資料庫(2018)
[2] 行政院環保署,廢照明光源及廢乾電池回收處理體系調查分析暨執行成效評估專案工作計畫(2018)
[3] 行政院環境保護署資源回收管理基金管理會(2018)
[4] 行政院環境保護署赴日本考察我國廢乾電池輸出境外處理情形及廢乾電池電弧爐處理技術(2006)
[5] Basel Convention http://www.basel.int/
[6] B. Ebin, M. Petranikova, B. Steenari and C. Ekberg, "Investigation of zinc recovery by hydrogen reduction assisted pyrolysis of alkaline and zinc-carbon battery waste", Waste Management, vol. 68, pp. 508-517, (2017).
[7] R. Farzana, R. Rajarao, K. Hassan, P. Behera and V. Sahajwalla, "Thermal nanosizing: Novel route to synthesize manganese oxide and zinc oxide nanoparticles simultaneously from spent Zn–C battery", Journal of Cleaner Production, vol. 196, pp. 478-488, (2018).
[8] H. Mahandra, R. Singh and B. Gupta, "Recycling of Zn-C and Ni-Cd spent batteries using Cyphos IL 104 via hydrometallurgical route", Journal of Cleaner Production, vol. 172, pp. 133-142, (2018).
[9] D. Leite, P. Carvalho, L. de Lemos, A. Mageste and G. Rodrigues, "Hydrometallurgical recovery of Zn(II) and Mn(II) from alkaline batteries waste employing aqueous two-phase system", Separation and Purification Technology, vol. 210, pp. 327-334, (2019).
[10] 韓小云,蓋立剛,陳鑫成。濕化學方式回收利用廢舊鋅錳乾電池,山東輕工業學院學報(2010)
[11] J. Mocellin, G. Mercier, J. Morel, P. Charbonnier, J. Blais and M. Simonnot, "Recovery of zinc and manganese from pyrometallurgy sludge by hydrometallurgical processing", Journal of Cleaner Production, vol. 168, pp. 311-321, (2017).
[12] F.c , Furlani G. a, Ferella F.b, De Michelis Ib, , Beolchini F.c, Vegliò F.b, " Recovery of zinc and manganese from spent batteries by different leaching systems"(2004)
[13] E. Sayilgan, T. Kukrer, N. Yigit, G. Civelekoglu and M. Kitis, "Acidic leaching and precipitation of zinc and manganese from spent battery powders using various reductants", Journal of Hazardous Materials, vol. 173, no. 1-3, pp. 137-143, (2010).
[14] G. Furlani, E. Moscardini, F. Pagnanelli, F. Ferella, F. Vegliò and L. Toro, "Recovery of manganese from zinc alkaline batteries by reductive acid leaching using carbohydrates as reductant", Hydrometallurgy, vol. 99, no. 1-2, pp. 115-118, (2009)
[15] S. Fröhlich and D. Sewing, "The BATENUS process for recycling mixed battery waste", Journal of Power Sources, vol. 57, no. 1-2, pp. 27-30, (1995)
[16] Y. El-Nadi, J. Daoud and H. Aly, "Leaching and separation of zinc from the black paste of spent MnO2-Zn dry cell batteries", Journal of Hazardous Materials, vol. 143, no. 1-2, pp. 328-334, (2007).
[17] N. Devi, K. Nathsarma and V. Chakravortty, "Separation of divalent manganese and cobalt ions from sulphate solutions using sodium salts of D2EHPA, PC 88A and Cyanex 272", Hydrometallurgy, vol. 54, no. 2-3, pp. 117-131, (2000).
[18] A. Salgado, "Recovery of zinc and manganese from spent alkaline batteries by liquid–liquid extraction with Cyanex 272", Journal of Power Sources, vol. 115, no. 2, pp. 367-373, (2003).
[19] L. Pietrelli, B. Bellomo, D. Fontana and M. Montereali, "Rare earths recovery from NiMH spent batteries", Hydrometallurgy, vol. 66, no. 1-3, pp. 135-139, (2002).
[20] L. Veloso, L. Rodrigues, D. Ferreira, F. Magalhães and M. Mansur, "Development of a hydrometallurgical route for the recovery of zinc and manganese from spent alkaline batteries", Journal of Power Sources, vol. 152, pp. 295-302, (2005).
[21] G. Belardi, R. Lavecchia, F. Medici and L. Piga, "Thermal treatment for recovery of manganese and zinc from zinc–carbon and alkaline spent batteries", Waste Management, vol. 32, no. 10, pp. 1945-1951, (2012).
[22] F. Ferella, I. De Michelis and F. Vegliò, "Process for the recycling of alkaline and zinc–carbon spent batteries", Journal of Power Sources, vol. 183, no. 2, pp. 805-811, (2008).
[23] L. Ferracin et al., "Lead recovery from a typical Brazilian sludge of exhausted lead-acid batteries using an electrohydrometallurgical process", Hydrometallurgy, vol. 65, no. 2-3, pp. 137-144, (2002).
[24] M.B.J.G. Freitas, M.K. de Pietre, "Electrochemical recycling of the zinc from spent Zn-MnO2 batteries", Fuel and Energy Abstracts, vol. 46, no. 5, p. 345. (2005)
[25] Lihchyi Wen, Chun-hsu Lin, Soo-cheol Lee, “Review of recycling performance indicators: A study on collection rate in Taiwan”, Waste Management, 29(8), 2248–2256 (2009)
[26] 蕭瓊茹,資源回收再利用產品之環境衝擊評估-以燈管及乾電池為例,國立台北科技大學環境管理研究所碩士論文 (2012)
[27] M. F. Almeida, Xara, S.M., Delgado, J., Costa, A.C., “Characterization of spent AA household alkaline batteries,” Waste Management, 26(5), 466–476 (2006)
[28] T. R. Crompton, “Battery Reference Book Third edition Battery Reference Book” (2000).
[29] 牛志睿,辛寶平,龐康,廢舊鋅錳電池鋅錳元素的分析表徵“環境科學學報”(2015)
[30] D.W. McComsey “Zinc–carbon batteries. (Leclanche and zinc chloride cell systems). In: Linden, D. (Ed.),” Handbook of Batteries, Chapter. 8, 193–237 (2001)
[31] David R. Lide, CRC “Handbook of Chemistry and Physics,”90th Ed., CD-ROM Version, CRC Press/Taylor and Francis, Boca Raton, (2010)
[32] ITIS智網,非鐵新興市場特輯,鋅金屬篇 (2018)
[33] Takahashi, Kiyoshi; Yoshikawa, Akihiko; Sandhu, Adarsh. Wide bandgap semiconductors: fundamental properties and modern photonic and electronic devices. Springer. (2007)
[34] Hernandezbattez, A; Gonzalez, R; Viesca, J; Fernandez, J; Diazfernandez, J; MacHado, A; Chou, R; Riba, J. CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants, (2007)
[35] J. Frenay, S Feron, “Domestic battery recycling in western Europe,” Proceedings of the Second International Symposium on Recycling of Metals and Engineered Materials, Volume. 2. The Minerals, Metals and Materials Society, 639–647 (1990)
[36] M.E. Schweers, J.C. Onuska, R.K. Hanewald, “A pyrometallurgical process for recycling cadmium containing batteries,” Proceedings of the HMC-South'92, New
Orleans, 333–335 (1992)
[37] T. Anulf, “SAB-NIFE Recycling concept for nickel–cadmium batteries: An industrialized and environmentally safe process,” Proceedings of the 6th International
Cadmium Conference. Cadmium Association, 161–163 (1990)
[38] R.H. Hanewald, W.A. Munson, D.L. Schweyer, “Processing EAF dusts and other nickel–chromium waste materials pyrometallurgically at INMETCO” Minerals and
Metallurgical Processing 169–173 (1992)
[39] G. Belardi, R. Lavecchia, F. Medici, L. Piga “Thermal treatment for recovery of manganese and zinc from zinc–carbon and alkaline spent batteries” Waste Management, 32(10), 1945–1951 (2012)
[40] M. Hasegawa, R. Ueyama, Y. Kashiwaya, T. Hirato, “Recovery of Zinc from used alkali-manganese dry cells,” Journal of Sustainable Metallurgy, 1(2), 144-150 (2015)
[41] M. Toita, T. Matsuoko, S. Kurozu, T. Ishimori, “Treatment and resources recovery of used dry batteries” Sumitomo Jukikai Giho 108, 6–10 (1988)
[42] A. Krebs, “Recycling of household batteries and heavy metal containing wastes” In: Gaballah, I., Hager, J., Solozabal, R. (Eds.), Proceedings of REWAS 99-Global Symposium on Recycling, Waste Treatment and Clean Technology, vol. 2. Minerals Metals and Materials Society, Warrendale, PA,1109–1116 (1999)
[43] A. Sobianowska-Turek, W. Szczepaniak, P. Maciejewski and M. Gawlik-Kobylińska, "Recovery of zinc and manganese, and other metals (Fe, Cu, Ni, Co, Cd, Cr, Na, K) from Zn-MnO 2 and Zn-C waste batteries: Hydroxyl and carbonate co-precipitation from solution after reducing acidic leaching with use of oxalic acid", Journal of Power Sources, vol. 325, pp. 220-228, (2016)
[44] P. Ashtari and P. Pourghahramani, "Selective mechanochemical alkaline leaching of zinc from zinc plant residue", Hydrometallurgy, vol. 156, pp. 165-172, (2015)
[45] R. Barik, K. Sanjay, B. Mishra and M. Mohapatra, "Micellar mediated selective leaching of manganese nodule in high temperature sulfuric acid medium", Hydrometallurgy, vol. 165, pp. 44-50, (2016)
[46] S. Maryam Sadeghi, G. Vanpeteghem, I. Neto and H. Soares, "Selective leaching of Zn from spent alkaline batteries using environmentally friendly approaches", Waste Management, vol. 60, pp. 696-705, (2017)
[47] A. Fattahi, F. Rashchi and E. Abkhoshk, "Reductive leaching of zinc, cobalt and manganese from zinc plant residue", Hydrometallurgy, vol. 161, pp. 185-192, (2016)
[48] X. Cao, D. Dreisinger, J. Lu and F. Belanger, "Electrorefining of high purity manganese", Hydrometallurgy, vol. 171, pp. 412-421, (2017)
[49] G. Furlani, E. Moscardini, F. Pagnanelli, F. Ferella, F. Vegliò and L. Toro, "Recovery of manganese from zinc alkaline batteries by reductive acid leaching using carbohydrates as reductant", Hydrometallurgy, vol. 99, no. 1-2, pp. 115-118, (2009)
[50] S. Xiong et al., "Recovery of manganese from low-grade pyrolusite ore by reductively acid leaching process using lignin as a low cost reductant", Minerals Engineering, vol. 125, pp. 126-132, (2018)
[51] M. Sinha and W. Purcell, "Reducing agents in the leaching of manganese ores: A comprehensive review", Hydrometallurgy, vol. 187, pp. 168-186, (2019)
[52] Q. LI et al., "Extraction of manganese and zinc from their compound ore by reductive acid leaching", Transactions of Nonferrous Metals Society of China, vol. 27, no. 5, pp. 1172-1179, (2017)
[53] 周靈靈,軟錳礦醛基類有機物還原酸浸的實驗研究,貴州大學碩士論文 (2016)
[54] N. Vatistas, M. Bartolozzi, S. Arras, “The dismantling of the spent alkaline zinc maganese dioxide batteries and the recovery of the zinc from the anodic material,” J. Power Sources, 101, 182–187 (2001)
[55] T. Buzatu, G. Popescu, I. Birloaga, S. Săceanu, “Study concerning the recovery of zinc and manganese from spent batteries by hydrometallurgical processes,” Waste Management, 33(3), 699–705 (2013)
[56] S.M. Shin, G. Senanayake, J. Sohn, J. Kang, D. Yang, T. Kim, “Separation of zinc from spent zinc-carbon batteries by selective leaching with sodium hydroxide,” Hydrometallurgy, 96(4), 349–353 (2009)
[57] 朱賢徐,王志堅,劉平,兩礦焙燒法製備硫酸錳的工藝研究,湖南有色金屬 (2010)
[58] R.Z. Vračar, “Manganese leaching in the FeS2–MnO2–O2–H2O system at high temperature in an autoclave,” Hydrometallurgy, 55(1), 79–92 (2000)
[59] H. Vu, J. Jandová,K. Lisá,F. Vranka, “Leaching of manganese deep ocean nodules in
FeSO4–H2SO4–H2O solutions” Hydrometallurgy, 77(1-2), 147-153 (2005)
[60] M.S.Bafghi, A. Zakeri.,Z. Ghasemi, M. Adeli, “Reductive dissolution of manganese ore in sulfuric acid in the presenee of iron metal” Hydrometallurgy, 90(2-4), 207-212 (2007)
[61] 常偉,低品位軟錳礦還原浸出過程及其動力學研究,中南大學碩士論文(2014)
[62] M. Buzatu, S. Săceanu, M.I. Petrescu, G.V. Ghica, T. Buzatu, “Recovery of zinc and manganese from spent batteries by reductive leaching in acidic media,” Journal of Power Sources, 247, 612-617 (2014)
[63] L.R.S. Veloso, L.E.O.C. Rodrigues, D.A. Ferreira, F.S.Magalhães, M.B.Mansur, “Development of a hydrometallurgical route for the recovery of zinc and manganese from spent alkaline batteries,” Journal of Power Sources, 152, 295-302 (2005)
[64] G. Senanayake, S-M. Shin, A. Senaputra, A. Senaputra, A. Winn, D. Pugaev, J. Avraamides, J-S. Sohn, D-J. Kim, “Comparative leaching of spent zinc-manganese-carbon batteries using sulfur dioxide in ammoniacal and sulfuric acid solutions,” Hydrometallurgy, 105(1-2), 36-41 (2010)
[65] J. Avraamides, G. Senanayake, R. Clegg, “Sulfur dioxide leaching of spent zinc–carbon-battery scrap,” Journal of Power Sources, 159, 1488-1493 (2006)
[66] B. Zeytuncu, “Dissolution of alkaline batteries in reductive acidic media,” Physicochemical Problems of Mineral Processing, 52(1), 437-450 (2016)
[67] M. H. Morcali, “Reductive atmospheric acid leaching of spent alkaline batteries in
H2SO4/Na2SO3 solutions,” International Journal of Minerals, Metallurgy, and Materials, 22(7), 674-681 (2015)
[68] G. Furlani, E. Moscardini, F. Pagnanelli, F. Ferella, F. Vegliò, L. Toro, “Recovery of manganese from zinc alkaline batteries by reductive acid leaching using carbohydrates as reductant,” Hydrometallurgy, 99(1-2), 115-118 (2009)
[69] F. Veglio, L. Toro, “Reductive leaching of a concentrate manganese-dioxide ore in acid-solution: stoichiometry and preliminary kinetic-analysis,” International Journal of Mineral Processing, 40(3-4), 257-272 (1994a)
[70] M. Trifoni, F. Veglio, G. Taglieri, L. Toro, “Acid leaching process by using glucose as reducing agent: a comparison among the efficiency of different kinds of manganiferous ores,” Minerals Engineering, 13, 217-221 (2000)

[71] E. Sayilgan, T. Kukrer, N.O. Yigit, G. Civelekoglu, M. Kitis, “Acidic leaching and precipitation of zinc and manganese from spent battery powders using various reductants,” J Hazard Mater, 173, 137-143 (2010)
[72] F. Ferella, I. D. Michelis, F. Beolchini, V. Innocenzi, F. Vegliò, “Extraction of Zinc and Manganese from Alkaline and Zinc-Carbon Spent Batteries by Citric-Sulphuric Acid Solution,” International Journal of Chemical Engineering, (2010)
[73] I. D. Michelis, F. Ferella, E. Karakaya, F. Beolchini, F. Vegliò, “Recovery of zinc and manganese from alkaline and zinc–carbon spent batteries,” Journal of Power Sources, 172, 975-983 (2007)
[74] Y. Liu, R Xu, “Reductive dissolution of MnO2 and manganese oxides in soils by low-molecular-weight organic compounds,” Journal of Environmental Chemistry, 34(6), 1037-1042 (2015)
[75] A.A. Baba, A.F. Adekola, R.B. Bale, “Development of a combined pyro- and hydro-metallurgical route to treat spent zinc–carbon batteries,” Journal of Hazardous Materials, 171(1-3), 838-844 (2009)
[76] M. Ulewicz, W. Walkowiak, “Selective removal of transition metal ions in transport through polymer inclusion membranes with organophosphorus acids,” Environment Protection Engineering, 31(3), 73-81 (2005)
[77] 史先菊,P204從高濃度含鋅溶液中萃取鋅的技術及機理研究,中南大學碩士論文 (2011)
[78] C.Y. Cheng, “Purification of synthetic laterite leach solution by solvent extraction using D2EHPA,” Hydrometallurgy, 56(3), 369–386 (2000)
[79] L. Falco, M.J. Quina, L.M. Gando-Ferreira, H. Thomas, G. Curutchet, “Solvent Extraction Studies for Separation of Zn(II) and Mn(II) from Spent Batteries Leach Solutions,” Separation Science and Technology, 49(3), 398-409 (2013)
[80] H.K. Haghighi, D. Moradkhani, M.M. Salarirad, “Separation of zinc from manganese, magnesium, calcium and cadmium using batch countercurrent extraction simulation followed by scrubbing and stripping,” Hydrometallurgy, 154, 9-16 (2015)
[81] R.K. Biswas, M.A. Habib, A.K. Karmakar, S. Tanzin, “Recovery of manganese and zinc from waste Zn–C cell powder: Mutual separation of Mn(II) and Zn(II) from leach liquor by solvent extraction technique,” Waste Management, 51, 149–156 (2016)
[82] Y.A. El-Nadi, J.A. Daoud, H.F. Aly, “Leaching and separation of zinc from the black paste of spent MnO2-Zn dry cell batteries,” Journal of Hazardous Materials, 143(1-2), 328–334 (2007)
[83] N. Devi, K.C. Nathsarma, V. Chakravortty, “Extraction and separation of Mn(II) and Zn(II) from sulphate solutions by sodium salts of Cyanex 272,” Hydrometallurgy 45(1-2), 169–179 (1997)
[84] K.C. Nathsarma, N. Devi, “Separation of Zn(II) and Mn(II) from sulphate solutions using sodium salts of D2EHPA, PC88A and Cyanex 272,” Hydrometallurgy, 84(3-4), 149–154 (2006)
[85] D. da Rocha, E. Paetzold and N. Kanswohl, "The shrinking core model applied on anaerobic digestion", Chemical Engineering and Processing: Process Intensification, vol. 70, pp. 294-300, (2013)
[86] 劉洪萍,楊志鴻,濕法冶金:浸出技術,冶金工業出版社 (2010)
[87] N. Takeno, “Atlas of Eh-pH diagrams Intercomparison of thermodynamic databases,” Geological Survey of Japan Open File Report No.419 (2005)
[88] H. Jafari, H. Abdollahi, M. Gharabaghi and A. Balesini, "Solvent extraction of zinc from synthetic Zn-Cd-Mn chloride solution using D2EHPA: Optimization and thermodynamic studies", Separation and Purification Technology, vol. 197, pp. 210-219, (2018)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-07-05起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-07-05起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw