進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2008201915430000
論文名稱(中文) 在肺癌中microRNAs的失調促進ZNF322A表現及轉錄活性
論文名稱(英文) Dysregulated microRNAs Enhance ZNF322A Expression and Transcriptional Activity in Lung Cancer
校院名稱 成功大學
系所名稱(中) 藥理學研究所
系所名稱(英) Department of Pharmacology
學年度 107
學期 2
出版年 108
研究生(中文) 黃士宣
研究生(英文) Shih-Hsuan Huang
學號 S26064078
學位類別 碩士
語文別 英文
論文頁數 74頁
口試委員 指導教授-王憶卿
口試委員-阮雪芬
口試委員-洪建中
口試委員-林世杰
中文關鍵字 肺癌  ZNF322A鋅指蛋白  miR-326  miR-484  Cyclin D1  Alpha-adducin  生物標記 
英文關鍵字 Lung cancer  ZNF322A  miR-326  miR-484  Cyclin D1  Alpha-adducin  Biomarker 
學科別分類
中文摘要 研究背景: ZNF322A (zinc finger protein 322A) 是一個致癌性鋅指蛋白轉錄因子,它會使其下游基因例如Cyclin D1 (CCND1)、P53、Alpha-adducin (ADD1) 的表現失調進而促進癌細胞生長及移動能力。先前實驗室的研究指出約有70%的東西方族群肺癌病患其ZNF322A的mRNA及蛋白都有過度表達的情形。除此之外,實驗室也發現ZNF322A蛋白會受到CK1δ/GSK3/FBXW7 路徑調控而降解;然而我們對於ZNF322A mRNA的表現是透過什麼機制達成動態平衡仍是未知的。
研究目的: 本研究旨在以肺癌細胞及動物模式去探討微小核醣核酸 (microRNAs) 對於ZNF322A的轉錄調控;並以肺癌病人檢體闡明ZNF322A與其上游微小核醣核酸調控子的關聯性。
研究結果: 藉由預測軟體分析,在ZNF322A基因的3′端非轉譯區 (3′UTR) 上可能擁有miR-98-5p、miR-135a-5p、miR-326以及miR-484的結合位,為了驗證這些候選的微小核醣核酸是否會調控ZNF322A的mRNA表現,我們將這些候選的微小核醣核酸類似物 (mimics) 轉染 (transfect) 至多種肺癌細胞株中並進行後續的實驗分析。首先,我們針對這四種微小核醣核酸建構ZNF322A 3′端非轉譯區的冷光表現載體 (3′UTR luciferase reporter) 並去檢測候選的微小核醣核酸是否會抑制冷光表現。在這四個候選微小核醣核酸中,只有miR-326以及miR-484可以抑制野生型 (wild-type) 的3′端非轉譯區的冷光活性 (luciferase activity),但是將miR-326與miR-484的預測結合位做突變 (mutation) 則冷光活性就不會受到miR-326與miR-484所抑制。再者,miR-326 mimics的大量表現會抑制ZNF322A的mRNA與蛋白表現;但是miR-484 mimics僅在mRNA層級去抑制ZNF322A表現而非蛋白層級。重要地,miR-326會透過減少ZNF322A下游標的CCND1及ADD1表現來抑制肺癌細胞的生長及爬行能力。在重建實驗 (reconstitution) 我們發現miR-326/ZNF322A/CCND1路徑對於細胞生長調控非常重要,而miR-326/ZNF322A/ADD1路徑則調控細胞移動能力。臨床檢體的檢測上,我們發現ZNF322A mRNA與miR-326的表現在肺癌病人上有著負相關的趨勢,此外,我們的分析結果也指出低表達ZNF322A/高表達miR-326 (ZNF322A-L/miR326-H) 的病人族群擁有較好的整體存活期(overall survival)。
結論: 我們的結果顯示了miR-326/ZNF322A路徑藉由減少CCND1與ADD1來抑制腫瘤進程 (tumor progression)。除此之外,腫瘤組織中低ZNF322A/高miR-326 (ZNF322A-L/miR326-H) 的表達形式 (profile) 在未來臨床應用上可能可以作為一個有潛力的生物標記(biomarker)。
英文摘要 Background: ZNF322A is an oncogenic zinc-finger transcription factor, which dysregulates genes in control of cell growth and cell motility such as cyclin D1 (CCND1), p53 and alpha-adducin (ADD1). Our published reports show that overexpression of ZNF322A mRNA and protein is found in about 70% of Asian and Caucasian lung cancer patients. In addition, ZNF322A protein degradation is regulated in part by the CK1δ/GSK3/FBXW7 axis. However, the mechanism involved in homeostasis of ZNF322A mRNA remains unclear.
Purpose: This study aims to investigate the microRNAs regulation on ZNF322A transcription in lung cancer cell and xenograft models. In addition, we explore the relationship between ZNF322A and its upstream miRNA regulators using clinical studies.
Results: The 3′UTR of ZNF322A contained target sites for microRNAs miR-98-5p, miR-135a-5p, miR-326 and miR-484 according to three prediction software or database. To validate the reciprocal transcription regulation of microRNA candidates on ZNF322A mRNA expression, multiple lung cancer cells were transfected with these indicated miRNAs mimics. We constructed 3′UTR luciferase reporter assay for all four miRNA candidates. Among them, miR-326 and miR-484 inhibited the ZNF322A wild-type 3′UTR luciferase activity, but the 3′UTR luciferase activity with the mutated seed regions of the corresponding microRNAs had no response to miR-326 or miR-484. Furthermore, expression of both ZNF322A mRNA and protein was attenuated by overexpressing of miR-326 mimics, but miR-484 inhibited ZNF322A expression only at the mRNA level, not protein level. Importantly, miR-326 suppressed proliferation and migration ability through inhibition of expression of ZNF322A and its downstream target genes CCND1 and ADD1 in lung cancer cells. Reconstitution experiments indicated that miR-326/ZNF322A/CCND1 was important for cell growth regulation while miR-326/ZNF322A/ADD1 was important for cell motility. Clinically, a trend of inverse correlation between miR-326 and ZNF322A mRNA expression was observed in lung cancer patients. Moreover, low ZNF322A/ high miR-326 (ZNF322A-L/miR326-H) profile showed better overall survival.
Conclusions: Our results reveal that miR-326/ZNF322A axis inhibits lung cancer progression by reducing CCND1 and ADD1 expression. Furthermore, our clinical studies suggest that low ZNF322A/ high miR-326 (ZNF322A-L/miR326-H) profile may be a potential prognosis biomarker for clinical application in the future.

論文目次 Introduction 1
I. Lung cancer
(A). Epidemiology of lung cancer 1
(B). Genetic alteration in lung cancer 1
II. MicroRNAs (miRNAs) in cancer
(A). Overview of miRNAs 2
(B). miRNAs in lung cancer 2
(C). Biomarkers and therapeutic strategies of miRNAs in cancer 3
(D). miR-326 in cancer 4
(E). miR-484 in cancer 4
III. Transcription regulation of ZNF322A in lung cancer cells
(A). Structure and function of ZNF322A 5
(B). ZNF322A in lung cancer progression 5
IV. The roles of centrosomal protein 170 (CEP170) and protein O-mannose kinase (SGK196)
(A). The function of CEP170 6
(B). The function of SGK196 7
Study basis and specific aims 8
Materials and methods 10
I. Cell lines and culture conditions 10
II. miRNA target prediction software programs 10
III. Transfection of plasmids and miRNA mimics 10
IV. 3′UTR reporter construct and site-directed mutagenesis 10
V. 3′UTR reporter assay 11
VI. Dual luciferase promoter activity assay 11
VII. RNA extraction and quantitative reverse transcriptase-polymerase
chain reaction (RT-qPCR) assay 12
VIII. TaqMan miRNA RT-qPCR assay 12
IX. Protein extraction 12
X. Western blot 13
XI. Cell proliferation assay 13
XII. Foci formation assay 14
XIII. Transwell migration assay 14
XIV. Tail vein injection metastasis assay in vivo 14
XV. Clinical samples of lung cancer patients 15
XVI. Statistical analysis 15
Results 16
I. Identification of candidate miRNAs that may target on ZNF322A 3′UTR
(A). The schematic diagram of candidate miRNAs selected from
miRNA target prediction software 16
(B). miR-326 and miR-484 inhibited the ZNF322A wild-type 3′UTR luciferase activity, but the 3′UTR with the mutated seed regions was not responding to the corresponding miRNAs 16
II. miR-326 inhibited ZNF322A expression and cancer cell proliferation and migration ability in vitro
(A). miR-326 downregulated expression of ZNF322A mRNA and protein 18
(B). miR-326 attenuated lung cancer cell proliferation and
migration ability in vitro 18
III. miR-326/ZNF322A/cyclin D1 axis regulated lung cancer cell growth in vitro
(A). miR-326 attenuated cyclin D1 (CCND1) mRNA and protein expression 19
(B). miR-326 decreased CCND1 expression through ZNF322A
transcriptional regulation in vitro 19
(C). miR-326 suppressed cancer cell proliferation through miR-326/ZNF322A/CCND1 axis in vitro 20
IV. miR-326/ZNF322A/alpha-adducin axis regulated tumor metastasis of lung cancer
(A). miR-326 decreased alpha-adducin (ADD1) expression through ZNF322A transcriptional regulation in vitro 20
(B). miR-326 attenuated lung cancer cell migration ability through miR-326/ZNF322A/ADD1 axis in vitro 21
(C). miR-326 inhibited lung tumor metastasis through miR-326/ZNF322A/ADD1 axis in vivo 21
V. miR-326 expression negative correlated with ZNF322A mRNA level in lung cancer patients
(A). miR-326 expression negative correlated with ZNF322A mRNA level in lung cancer patients 22
(B). The patients with low ZNF322A/ high miR-326 (ZNF322A-L/miR-326-H) expression profile showed the better overall survival than other patients 23
VI. miR-484 negatively regulated ZNF322A mRNA expression
(A). miR-484 downregulated ZNF322A mRNA without changing the protein expression of ZNF322A 24
(B). miR-484 did not inhibit mRNA expression of FBXW7α, the E3-ligase of ZNF322A 25
VII. ZNF322A activated promoter activity of CEP170 and SGK196 genes
(A). ZNF322A activated promoter activity of CEP170 and SGK196 25
(B). ZNF322A transcriptionally activated expression of CEP170 gene, but not SGK196 gene 26
Discussion 27
I. Dysregulated miR-326/ZNF322A/CCND1 axis and miR-326/ZNF322A/ADD1 axis contribute to lung tumorigenesis 27
II. Low ZNF322A/ high miR-326 (ZNF322A-L/miR326-H) profile may be selected as a potential prognosis biomarker 28
III. miR-484 may inhibit other ZNF322A protein ubiquitination pathways in lung cancer 29
IV. ZNF322A promoted CEP170 promoter activity and mRNA expression, while ZNF322A promoted SGK196 promoter activity but not the SGK196 mRNA expression 30
V. Conclusion and perspectives 31
References 32
Tables 39
Figures 48
Appendix Figures 68
Appendix Tables 71

TABLE CONTENTS
Table 1. The plasmids and their characteristics used in the current study 40
Table 2. The primers used in the current study 42
Table 3. Antibodies and their reaction conditions used in the current study 44
Table 4. Alteration of ZNF322A mRNA and miR-326 expression in relation to clinicopathological parameters in 120 lung cancer patients’ samples 45
Table 5. Cox regression analysis of risk factors for cancer-related death in lung cancer patients 46



FIGURE CONTENTS
Figure 1. The schematic diagram of candidate miRNAs selected from miRNA target prediction software 49
Figure 2. miR-326 and miR-484 inhibited the ZNF322A wild-type 3′UTR luciferase activity, but the 3′UTR with the mutated seed regions was not responding to the corresponding miRNAs 51
Figure 3. miR-326 downregulated expression of ZNF322A mRNA and protein 53
Figure 4. miR-326 attenuated lung cancer cell proliferation and migration ability in vitro 54
Figure 5. miR-326 attenuated CCND1 mRNA and protein expression 56
Figure 6. miR-326 decreased CCND1 expression through ZNF322A transcriptional regulation in vitro 57
Figure 7. miR-326 suppressed cancer cell proliferation through miR-326/ZNF322A/CCND1 axis in vitro 58
Figure 8. miR-326 decreased ADD1 expression through ZNF322A transcriptional regulation in vitro 59
Figure 9. miR-326 attenuated lung cancer cell migration ability through miR-326/ZNF322A/ADD1 axis in vitro 60
Figure 10. miR-326 inhibited lung tumor metastasis through miR-326/ZNF322A/ADD1 axis in vivo 61
Figure 11. miR-326 expression negative correlated with ZNF322A mRNA level in lung cancer patients 62
Figure 12. miR-484 downregulated ZNF322A mRNA without changing the protein expression of ZNF322A 64
Figure 13. miR-484 did not inhibit mRNA expression of FBXW7α, the E3-ligase of ZNF322A 65
Figure 14. ZNF322A enhanced promoter activity of CEP170 gene and SGK196 gene 66
Figure 15. The schematic model of miR-326/ZNF322A/CCND1 axis and miR-326/ZNF322A/ADD1 axis in regulation of lung tumor growth and metastasis 67

APPENDIX CONTENTS
Appendix Figure 1. The biogenesis and function of miRNA 69
Appendix Figure 2. The experimental procedure of 3′UTR reporter assay used in this study 70
Appendix Table 1. The well-known suppressor-miRNAs and onco-miRNAs in lung cancer 72
Appendix Table 2. The downstream targets of miR-326 or miR-484 in lung cancer 74

參考文獻 Ambros V. (2004). The functions of animal microRNAs. Nature. 431, 350-355.
Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, Zhai Y, Giordano TJ, Qin ZS, Moore BB, MacDougald OA, Cho KR and Fearon ER. (2007). p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol. 17, 1298-1307.
Bhatti I, Lee A, James V, Hall RI, Lund JN, Tufarelli C, Lobo DN and Larvin M. (2011). Knockdown of microRNA-21 inhibits proliferation and increases cell death by targeting programmed cell death 4 (PDCD4) in pancreatic ductal adenocarcinoma. J Gastrointest Surg. 15, 199-208.
Bouchie A. (2013). First microRNA mimic enters clinic. Nat Biotechnol. 31, 577.
Ceppi P, Mudduluru G, Kumarswamy R, Rapa I, Scagliotti GV, Papotti M and Allgayer H. (2010). Loss of miR-200c expression induces an aggressive, invasive, and chemoresistant phenotype in non-small cell lung cancer. Mol Cancer Res. 8, 1207-1216.
Cai M, Wang Z, Zhang J, Zhou H, Jin L, Bai R and Weng Y. (2015). Adam17, a target of mir-326, promotes EMT-induced cells invasion in lung adenocarcinoma. Cell Physiol Biochem. 36, 1175-1185.
Di Costanzo S, Balasubramanian A, Pond HL, Rozkalne A, Pantaleoni C, Saredi S, Gupta VA, Sunu CM, Yu TW, Kang PB, Salih MA, Mora M, Gussoni E, Walsh CA and Manzini MC. (2014). POMK mutations disrupt muscle development leading to a spectrum of neuromuscular presentations. Hum Mol Genet. 23, 5781-5792.
Devarakonda S, Morgensztern D and Govindan R. (2015). Genomic alterations in lung adenocarcinoma. Lancet Oncol. 16, e342-351.
Du W, Liu X, Chen L, Dou Z, Lei X, Chang L, Cai J, Cui Y, Yang D, Sun Y, Li Y and Jiang C. (2015). Targeting the SMO oncogene by miR-326 inhibits glioma biological behaviors and stemness. Neuro Oncol. 17, 243-253.
Denu RA, Shabbir M, Nihal M, Singh CK, Longley BJ, Burkard ME and Ahmad N. (2018). Centriole Overduplication is the Predominant Mechanism Leading to Centrosome Amplification in Melanoma. Mol Cancer Res. 16, 517-527.
Filipowicz W, Bhattacharyya SN and Sonenberg N. (2008). Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 9, 102-114.
Freed-Pastor WA and Prives C. (2012). Mutant p53: one name, many proteins. Genes Dev. 26, 1268-1286.
Garofalo M, Di Leva G, Romano G, Nuovo G, Suh SS, Ngankeu A, Taccioli C, Pichiorri F, Alder H, Secchiero P, Gasparini P, Gonelli A, Costinean S, Acunzo M, Condorelli G and Croce CM. (2009). miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell. 16, 498-509.
Garofalo M, Jeon YJ, Nuovo GJ, Middleton J, Secchiero P, Joshi P, Alder H, Nazaryan N, Di Leva G, Romano G, Crawford M, Nana-Sinkam P and Croce CM. (2013). miR-34a/c-dependent PDGFR-alpha/beta downregulation inhibits tumorigenesis and enhances TRAIL-induced apoptosis in lung cancer. PLoS One. 8, e67581.
Gu J, Zhou Y, Huang L, Ou W, Wu J, Li S, Xu J, Feng J and Liu B. (2016). TP53 mutation is associated with a poor clinical outcome for non-small cell lung cancer: Evidence from a meta-analysis. Mol Clin Oncol. 5, 705-713.
Helwak A, Kudla G, Dudnakova T and Tollervey D. (2013). Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell. 153, 654-665.
Hayes J, Peruzzi PP and Lawler S. (2014). MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med. 20, 460-469.
Hu Y, Xie H, Liu Y, Liu W, Liu M and Tang H. (2017). miR-484 suppresses proliferation and epithelial-mesenchymal transition by targeting ZEB1 and SMAD2 in cervical cancer cells. Cancer Cell Int. 17, 36.
Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D and Slack FJ. (2005). RAS is regulated by the let-7 microRNA family. Cell. 120, 635-647.
Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K, Ovcharenko D, Wilson M, Wang X, Shelton J, Shingara J, Chin L, Brown D and Slack FJ. (2007). The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res. 67, 7713-7722.
Jen J and Wang YC. (2016). Zinc finger proteins in cancer progression. J Biomed Sci. 23, 53.
Jen J, Lin LL, Chen HT, Liao SY, Lo FY, Tang YA, Su WC, Salgia R, Hsu CL, Huang HC, Juan HF and Wang YC. (2016). Oncoprotein ZNF322A transcriptionally deregulates alpha-adducin, cyclin D1 and p53 to promote tumor growth and metastasis in lung cancer. Oncogene. 35, 2357-2369.
Jen J, Liu CY, Chen YT, Wu LT, Shieh YC, Lai WW and Wang YC. (2019). Oncogenic zinc finger protein ZNF322A promotes stem cell-like properties in lung cancer through transcriptional suppression of c-Myc expression. Cell Death Differ. 26, 1283–1298.
Jadideslam G, Ansarin K, Sakhinia E, Babaloo Z, Abhari A, Ghahremanzadeh K, Khalili M, Radmehr R and Kabbazi A. (2019). Diagnostic biomarker and therapeutic target applications of miR-326 in cancers: A systematic review. J Cell Physiol. doi: 10.1002/jcp.28782. [Epub ahead of print]
Kobayashi S, Boggon TJ, Dayaram T, Janne PA, Kocher O, Meyerson M, Johnson BE, Eck MJ, Tenen DG and Halmos B. (2005). EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med. 352, 786-792.
Kasinski AL and Slack FJ. (2012). miRNA-34 prevents cancer initiation and progression in a therapeutically resistant K-ras and p53-induced mouse model of lung adenocarcinoma. Cancer Res. 72, 5576-5587.
Kang K, Zhang J, Zhang X and Chen Z. (2018). MicroRNA-326 inhibits melanoma progression by targeting KRAS and suppressing the AKT and ERK signalling pathways. Oncol Rep. 39, 401-410.
Li Y, Wang Y, Zhang C, Yuan W, Wang J, Zhu C, Chen L, Huang W, Zeng W, Wu X and Liu M. (2004). ZNF322, a novel human C2H2 Kruppel-like zinc-finger protein, regulates transcriptional activation in MAPK signaling pathways. Biochem Biophys Res Commun. 325, 1383-1392.
Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR and Golub TR. (2005). MicroRNA expression profiles classify human cancers. Nature. 435, 834-838.
Lee YS and Dutta A. (2009). MicroRNAs in cancer. Annu Rev Pathol. 4, 199-227.
Lo FY, Chang JW, Chang IS, Chen YJ, Hsu HS, Huang SF, Tsai FY, Jiang SS, Kanteti R, Nandi S, Salgia R and Wang YC. (2012). The database of chromosome imbalance regions and genes resided in lung cancer from Asian and Caucasian identified by array-comparative genomic hybridization. BMC Cancer. 12, 235.
Lemjabbar-Alaoui H, Hassan OU, Yang YW and Buchanan P. (2015). Lung cancer: Biology and treatment options. Biochim Biophys Acta. 1856, 189-210.
Li D, Du X, Liu A and Li P. (2016). Suppression of nucleosome-binding protein 1 by miR-326 impedes cell proliferation and invasion in non-small cell lung cancer cells. Oncol Rep. 35, 1117-1124.
Li J, Li S, Chen Z, Wang J, Chen Y, Xu Z, Jin M and Yu W. (2016). miR-326 reverses chemoresistance in human lung adenocarcinoma cells by targeting specificity protein 1. Tumour Biol. 37, 13287-13294.
Li T, Ding ZL, Zheng YL and Wang W. (2017). MiR-484 promotes non-small-cell lung cancer (NSCLC) progression through inhibiting Apaf-1 associated with the suppression of apoptosis. Biomed Pharmacother. 96, 153-164.
Liao SY, Chiang CW, Hsu CH, Chen YT, Jen J, Juan HF, Lai WW and Wang YC. (2017). CK1delta/GSK3beta/FBXW7alpha axis promotes degradation of the ZNF322A oncoprotein to suppress lung cancer progression. Oncogene. 36, 5722-5733.
Liang X, Li Z, Men Q, Li Y, Li H and Chong T. (2018). miR-326 functions as a tumor suppressor in human prostatic carcinoma by targeting Mucin1. Biomed Pharmacother. 108, 574-583.
Mayr C, Hemann MT and Bartel DP. (2007). Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science. 315, 1576-1579.
O'Donnell KA, Wentzel EA, Zeller KI, Dang CV and Mendell JT. (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature. 435, 839-843.
Pan X, Wang ZX and Wang R. (2010). MicroRNA-21: a novel therapeutic target in human cancer. Cancer Biol Ther. 10, 1224-1232.
Peng Y and Croce CM. (2016). The role of MicroRNAs in human cancer. Signal Transduct Target Ther. 1, 15004.
Rudin CM, Avila-Tang E, Harris CC, Herman JG, Hirsch FR, Pao W, Schwartz AG, Vahakangas KH and Samet JM. (2009). Lung cancer in never smokers: molecular profiles and therapeutic implications. Clin Cancer Res. 15, 5646-5661.
Sampson VB, Rong NH, Han J, Yang Q, Aris V, Soteropoulos P, Petrelli NJ, Dunn SP and Krueger LJ. (2007). MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res. 67, 9762-9770.
Smith G, Bounds R, Wolf H, Steele RJ, Carey FA and Wolf CR. (2010). Activating K-Ras mutations outwith 'hotspot' codons in sporadic colorectal tumours - implications for personalised cancer medicine. Br J Cancer. 102, 693-703.
Sun C, Huang C, Li S, Yang C, Xi Y, Wang L, Zhang F, Fu Y and Li D. (2016). Hsa-miR-326 targets CCND1 and inhibits non-small cell lung cancer development. Oncotarget. 7, 8341-8359.
Siegel RL, Miller KD and Jemal A. (2019). Cancer statistics, 2019. CA Cancer J Clin. 69, 7-34.
Taguchi A, Yanagisawa K, Tanaka M, Cao K, Matsuyama Y, Goto H and Takahashi T. (2008). Identification of hypoxia-inducible factor-1 alpha as a novel target for miR-17-92 microRNA cluster. Cancer Res. 68, 5540-5545.
Tokumaru S, Suzuki M, Yamada H, Nagino M and Takahashi T. (2008). let-7 regulates Dicer expression and constitutes a negative feedback loop. Carcinogenesis. 29, 2073-2077.
Takeyama Y, Sato M, Horio M, Hase T, Yoshida K, Yokoyama T, Nakashima H, Hashimoto N, Sekido Y, Gazdar AF, Minna JD, Kondo M and Hasegawa Y. (2010). Knockdown of ZEB1, a master epithelial-to-mesenchymal transition (EMT) gene, suppresses anchorage-independent cell growth of lung cancer cells. Cancer Lett. 296, 216-224.
Taiwan Ministry of Health and Welfare, R.O.C.T. General Health Statistics. 2017. http://www.mohw.gov.tw/DOS/np-1776-113.html
von Renesse A, Petkova MV, Lutzkendorf S, Heinemeyer J, Gill E, Hubner C, von Moers A, Stenzel W and Schuelke M. (2014). POMK mutation in a family with congenital muscular dystrophy with merosin deficiency, hypomyelination, mild hearing deficit and intellectual disability. J Med Genet. 51, 275-282.
Wang R, Chen X, Xu T, Xia R, Han L, Chen W, De W and Shu Y. (2016). MiR-326 regulates cell proliferation and migration in lung cancer by targeting phox2a and is regulated by HOTAIR. Am J Cancer Res. 6, 173-186.
Wang H, Peng R, Wang J, Qin Z and Xue L. (2018). Circulating microRNAs as potential cancer biomarkers: the advantage and disadvantage. Clin Epigenetics. 10, 59.
Wu SG and Shih JY. (2018). Management of acquired resistance to EGFR TKI-targeted therapy in advanced non-small cell lung cancer. Mol Cancer. 17, 38.
Xiao C, Srinivasan L, Calado DP, Patterson HC, Zhang B, Wang J, Henderson JM, Kutok JL and Rajewsky K. (2008). Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol. 9, 405-414.
Yoshida-Moriguchi T, Willer T, Anderson ME, Venzke D, Whyte T, Muntoni F, Lee H, Nelson SF, Yu L and Campbell KP. (2013). SGK196 is a glycosylation-specific O-mannose kinase required for dystroglycan function. Science. 341, 896-899.
Ye FG, Song CG, Cao ZG, Xia C, Chen DN, Chen L, Li S, Qiao F, Ling H, Yao L, Hu X and Shao ZM. (2015). Cytidine deaminase axis modulated by miR-484 differentially regulates cell proliferation and chemoresistance in breast cancer. Cancer Res. 75, 1504-1515.
Yeh CH, Bellon M and Nicot C. (2018). FBXW7: a critical tumor suppressor of human cancers. Mol Cancer. 17, 115.
Zhu S, Wu H, Wu F, Nie D, Sheng S and Mo YY. (2008). MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res. 18, 350-359.
Zhang JG, Wang JJ, Zhao F, Liu Q, Jiang K and Yang GH. (2010). MicroRNA-21 (miR-21) represses tumor suppressor PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC). Clin Chim Acta. 411, 846-852.
Zhang Q, Li X, Li X, Li X and Chen Z. (2018). LncRNA H19 promotes epithelial-mesenchymal transition (EMT) by targeting miR-484 in human lung cancer cells. J Cell Biochem. 119, 4447-4457.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw